pp 1–20 | Cite as

Carbon based membranes with modified properties: thermal, morphological, mechanical and antimicrobial

  • M. A. SilvaEmail author
  • H. P. Felgueiras
  • M. T. P. de Amorim
Letter to the Editor


Conjugation of biodegradable cellulose acetate (CA) with high-aspect-ratio carbon nanotubes may increase common properties as well as the specific antibacterial activity of the resulting nanocomposite. Hence, we developed nanocomposite membranes based on pristine-multiwalled carbon nanotubes (p-MWCNTs) and CA. Two air gaps (100 and 200 µm) of a film coating applicator were used for casting the solutions into glass plates, and the membrane precipitation was attained via nonsolvent induced phase separation. The thermal (TGA and DSC), morphological (SEM), and dynamical properties (DMA) of the nanocomposite membranes improved with the increasing content of p-MWCNTs in the nanocomposites. In addition, after 48 h contact there was a reduction of more than 70% and 80% of Staphylococcus aureus and Escherichia coli bacteria, respectively, due to the electrostatic repulsion between the negatively-charged CNTs-loaded nanochannels and the bacterial colonies, as explained by zero charge point measurements. Antibacterial testing confirmed the already discussed antifouling properties of the nanocomposite membranes compared to pristine CA membranes. Membrane performance analysis revealed a rejection of over 24% of E. coli, thus establishing the potential of these nanocomposites for applications in wastewater filtration and biofilm removal.

Graphic abstract


Cellulose acetate Pristine-multiwalled carbon nanotubes Nanocomposite membranes Material testing Anti-biofouling activity 



This work was financed by PROJECT TSSiPRO – TECHNOLOGIES FOR SUSTAINABLE AND SMART INNOVATIVE PRODUCTS – NORTE-01–0145-FEDER-000015 and by national funds through FCT—Portuguese Foundation for Science and Technology within the scope of the PROJECT UID/CTM/00264/2019.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10570_2019_2861_MOESM1_ESM.docx (18.9 mb)
Supplementary file1 (DOCX 19396 kb)


  1. Ahmed F, Santos CM, Mangadlao J, Advincula R, Rodrigues DF (2013) Antimicrobial PVK:SWNT nanocomposite coated membrane for water purification: performance and toxicity testing. Water Res 47(12):3966–3975. CrossRefPubMedGoogle Scholar
  2. Al-Jumaili A, Alancherry S, Bazaka K, Jacob MV (2017) Review on the antimicrobial properties of carbon nanostructures. Materials 10(9):1066. CrossRefPubMedCentralGoogle Scholar
  3. Anastasi EM, Matthews B, Stratton HM, Katouli M (2012) Pathogenic Escherichia coli found in sewage treatment plants and environmental waters. Appl Environ Microbiol 78(16):5536–5541. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aslan S, Loebick CZ, Kang S, Elimelech M, Pfefferle LD, Tassel PRV (2010) Antimicrobial biomaterials based on carbon nanotubes dispersed in poly(lactic-co-glycolic acid). Nanoscale 2:1789–1794. CrossRefPubMedGoogle Scholar
  5. Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23(6):690–718. CrossRefPubMedGoogle Scholar
  6. Blenkinsopp S, Costerton J (1991) Understanding bacterial biofilms. Trends Biotechnol 9:138–143. CrossRefGoogle Scholar
  7. Bocchini S, Frache A, Camino G, Claes M (2007) Polyethylene thermal oxidative stabilisation in carbon nanotubes based nanocomposites. Eur Polym J 43:3222–3235. CrossRefGoogle Scholar
  8. Bom D, Andrews R, Jacques D, Anthony J, Chen B, Meier MS, Selegue JP (2002) Thermo-gravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett 2:615–619. CrossRefGoogle Scholar
  9. Brady-Estévez AS, Kang S, Elimelech M (2008) A single-walled carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4(4):481–484. CrossRefPubMedGoogle Scholar
  10. Brandão LR, Yoshida IVP, Felisberti MI, Gonçalves MDC (2013) Preparation and characterization of cellulose acetate/polysiloxane composites. Cellulose 20:2791–2802. CrossRefGoogle Scholar
  11. Chatterjee S, Judeh ZMA (2015) Encapsulation of fish oil with N-stearoyl Obutylglyceryl chitosan using membrane and ultrasonic emulsification processes. Carbohydr Polym 123:432–442. CrossRefPubMedGoogle Scholar
  12. Chede S, Anaya NM, Oyanedel-Craver V, Gorgannejad S, Harris TAL, Al-Mallahi J, Abu-Dalo M, Qdais HA, Escobar IC (2019) Desalination using low biofouling nanocomposite membranes: from batchscale to continuous-scale membrane fabrication. Desalination 451:81–91. CrossRefGoogle Scholar
  13. Choi U, Lee C-R (2019) Antimicrobial agents that inhibit the outer membrane assembly machines of gram-negative bacteria. J Microbiol Biotechnol 29(1):1–10. CrossRefPubMedGoogle Scholar
  14. Chung CV, Buu NQ, Chau NH (2005) Influence of surface charge and solution pH on the performance characteristics of a nanofiltration membrane. Sci Technol Adv Mater 6:246–250. CrossRefGoogle Scholar
  15. de Pinto M, CE, da Silva DD, Gomes ALA, Leite V dos SA, Fialho e Moraes AR, Novais RF, Tronto J, Pinto, FG, (2019) Film based on magnesium impregnated biochar/cellulose acetate for phosphorus adsorption from aqueous solution. RSC Adv 9(10):5620–5627. CrossRefGoogle Scholar
  16. Ferrarezi MMF, Rodrigues GV, Felisberti MI, Gonçalves MDC (2013) Investigation of cellulose acetate viscoelastic properties in different solvents and microstructure. Eur Polym J 49:2730–2737. CrossRefGoogle Scholar
  17. Filho GR, Monteiro DS, Meireles CS, de Assuncção RMN, Cerqueira DA, Barud HS, Ribeiro SJL, Messadeq Y (2008) Synthesis and characterization of cellulose acetate produced from recycled newspaper. Carbohydr Polym 73:74–82. CrossRefGoogle Scholar
  18. Flemming H-C, Wingnder J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Herzberg M, Elimelech M (2007) Biofouling of reverse osmosis membranes: role of biofilm-enhanced osmotic pressure. J Membr Sci 295(1–2):11–20. CrossRefGoogle Scholar
  20. Ihsanullah (2019) Carbon nanotube membranes for water purification: developments, challenges, and prospects for the future. Sep Purif Technol 209:307–337. CrossRefGoogle Scholar
  21. Ioninullă M, Crică LE, Voicu SI, Dinescu S, Miculescu F, Costache M, Iovu H (2018) Synergistic effect of carbon nanotubes and graphene for high performance cellulose acetate membranes in biomedical applications. Carbohydr Polym 183:50–61. CrossRefGoogle Scholar
  22. Kadla JF, Korehei R (2010) Effect of hydrophilic and hydrophobic interactions on the rheological behavior and microstructure of a ternary cellulose acetate system. Biomacromoles 11:1074−1081. CrossRefGoogle Scholar
  23. Kamal H, Abd-Elrahim FM, Lotfy S (2014) Characterization and some properties of cellulose acetate-co-polyethylene oxide blends prepared by the use of gamma irradiation. J Radiat Res Appl Sci 7(2):146–153. CrossRefGoogle Scholar
  24. Kian LK, Jawaid M, Ariffin H, Karim Z, Sultan MTH (2019) Morphological, physico-chemical, and thermal properties of cellulose nanowhiskers from roselle fibers. Cellulose 26:6599–6613. CrossRefGoogle Scholar
  25. Kimura K, Hara H, Watanabe Y (2005) Removal of pharmaceutical compounds by submerged membrane bioreactors (MBRs). Desalination 178:135–140. CrossRefGoogle Scholar
  26. Kochkodan V, Hilal N (2015) A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 356:187–207. CrossRefGoogle Scholar
  27. Lalia BS, Kochkodan V, Hashaikeh R, Hilal N (2013) A review on membrane fabrication: structure, properties and performance relationship. Desalination 326:77–95. CrossRefGoogle Scholar
  28. Li J, Tong L, Fang Z, Gu A, Xu Z (2006) Thermal degradation behavior of multi-walled carbon nanotubes/polyamide 6 composites. Polym Degrad Stabil 91:2046–2052. CrossRefGoogle Scholar
  29. Li N, Zheng J, Hadi P, Yang M, Huang X, Ma H, Walker HW, Hsiao BS (2019) Synthesis and characterization of a high flux nanocellulose-cellulose acetate nanocomposite membrane. Membranes 9(6):70. CrossRefPubMedCentralGoogle Scholar
  30. Liu L, Son M, Chakraborty S, Bhattacharjee C, Choi H (2013) Fabrication of ultra-thin polyelectrolyte/carbon nanotube membrane by spray-assisted layer-by-layer technique: characterization and its anti-protein fouling properties for water treatment. Desalin Water Treat 51(31–33):6194–6200. CrossRefGoogle Scholar
  31. Liu C, Lee J, Ma J, Elimelech M (2017) Antifouling thin-film composite membranes by controlled architecture of zwitterionic polymer brush layer. Environ Sci Technol 51:2161–2169. CrossRefPubMedGoogle Scholar
  32. Lizundia E, Maceiras A, Vilas JL, Martins P, Lanceros-Mendez S (2017) Magnetic cellulose nanocrystal nanocomposites for the developemnet of green functional materials. Carbohydr Polym 175:425–432. CrossRefPubMedGoogle Scholar
  33. Mahajan A, Kingon A, Kukovecz A, Konya Z, Vilarinho PM (2013) Studies on the thermal decomposition of multiwall carbon nanotubes under different atmospheres. Mat Lett 90:165–168. CrossRefGoogle Scholar
  34. Mahmood T, Saddique MT, Naeem A, Mustafa S, Zeb N, Shah KH, Waseem M (2011) Kinetic and thermodynamic study of Cd(II), Co(II) and Zn(II) adsorption from aqueous solution by NiO. Chem Eng J 171(3):935–940. CrossRefGoogle Scholar
  35. Mai-Prochnow A, Clauson M, Hong J, Murphy AB (2016) Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci Rep 6(1).
  36. Majeed S, Fierro D, Buhr K, Wind J, Du B, Boschetti-de-Fierro A, Abetz V (2012) Multiwalled carbon nanotubes (MWCNTs) mixed polyacrylonitrile (PAN) ultrafiltration membranes. J Membr Sci 403–404:101–109. CrossRefGoogle Scholar
  37. Mendis DA, Rosenberg M, Azam F (2000) A note on the possible electrostatic disruption of bacteria. IEEE T Plasma Sci 28:1304–1306. CrossRefGoogle Scholar
  38. Mocan T, Matea CT, Pop T, Mosteanu O, Buzoianu AD, Suciu S, Puia C, Zdrehus C, Iancu C, Mocan L (2017) Carbon nanotubes as anti-bacterial agents. Cell Mol Life Sci 74:3467–3479. CrossRefPubMedGoogle Scholar
  39. Mulder M (1996). In: Basic principles of membrane technology, 2nd edn. Kluwer Academic Publishers, Dordrecht, Boston, London.
  40. Munir S, Daood SS, Nimmo W, Cunliffe AM, Gibbs BM (2009) Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol 100(3):1413–1418. CrossRefPubMedGoogle Scholar
  41. Najjar A, Sabri S, Al-Gaashani R, Atieh MA, Kochkodan V (2019) Antibiofouling performance by polyethersulfone membranes cast with oxidized multiwalled carbon nanotubes and Arabic gum. Membranes 9(2):1–32. CrossRefGoogle Scholar
  42. Pastrana-Martínez LM, Morales-Torres S, Papageorgiou S, Katsaros FK, Romanos GE, Figueiredo JL, Faria JL, Falaras P, Silva AMT (2013) Photocatalytic behaviour of nanocarbon–TiO2 composites and immobilization into hollow fibres. Appl Catal B: Environ 142–143:101–111. CrossRefGoogle Scholar
  43. Rehan ZA, Ahmed I, Gzara L, Hussain T, Drioli E (2018) Potential of nanoparticles for the development of polymeric membranes. In: Khan SB (ed)Nanomaterials for environmental applications and their fascinating attributes. Bentham Science Publishers, Sharjah, U.A.E, pp 259−290. Google Scholar
  44. Saleh TA, Gupta VK (2016) Synthesis of nanomaterial-incorporated membranes by physical methods. In: Saleh TA, Gupta VK (eds) Nanomaterial and polymer membranes. Elsevier, Amsterdam, pp 161–186CrossRefGoogle Scholar
  45. Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25(1):15−34. 10.1021/tx200339hCrossRefGoogle Scholar
  46. Sánchez-Márquez JA, Fuentes-Ramírez R, Cano-Rodríguez I, Gamino-Arroyo Z, Rubio-Rosas E, Kenny JM, Rescignano N (2015) Membrane made of cellulose acetate with polyacrylic acid reinforced with carbon nanotubes and its applicability for chromium removal. Int J Polym Sci 2015:1–12. CrossRefGoogle Scholar
  47. Sari NH, Wardana ING, Irawan YS, Siswanto E (2017) Corn husk fiber-polyester composites as sound absorber: nonacoustical and acoustical properties. Adv Acoust Vibr 2017:1–7. CrossRefGoogle Scholar
  48. Silva MA, Hilliou L, Pessoa de Amorim MT (2019) Fabrication of pristine-multiwalled carbon nanotubes/cellulose acetate composites for removal of methylene blue. Polym Bull. CrossRefGoogle Scholar
  49. Smith SC, Rodrigues DF (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91:122–143. CrossRefGoogle Scholar
  50. Souza VC, Quadri MGN (2013) Organic-inorganic hybrid membranes in separation processes: a 10-year review. Braz J Chem Eng 30(4):683–700. CrossRefGoogle Scholar
  51. Tan WF, Lu SJ, Liu F, Feng XH, He JZ, Koopal LK (2008) Determination of the point of zero charge of manganese oxides with different methods including an improved salt titration method. Soil Sci 173:277–286. CrossRefGoogle Scholar
  52. Tarchoun AF, Trache D, Klapötke TM, Derradji M, Bessa W (2019) Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose 26:7635–7651. CrossRefGoogle Scholar
  53. Trache D, Hussin MH, Haafiz MM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Vecitis CD, Schnoor MH, Rahaman MS, Schiffman JD, Elimelech M (2011) Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ Sci Technol 45:3672−3679. 10.1021/es2000062CrossRefGoogle Scholar
  55. Wang Z, McDonald AG, Westerhof RJM, Kersten SRA, Cuba-Torres CM, Ha S, Pecha B, Garcia-Perez M (2013) Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis. J Anal Appl Pyrolysis 100:56–66. CrossRefGoogle Scholar
  56. Wu CS, Liao HT (2017) Interface design of environmentally friendly carbon nanotube-filled polyester composites: fabrication, characterization, functionality and application. EXPRESS Polym Lett 11(3):187–198. CrossRefGoogle Scholar
  57. Yamashita Y, Endo T (2004) Deterioration behavior of cellulose acetate films in acidic or basic aqueous solutions. J Appl Polym Sci 91(5):3354–3361. CrossRefGoogle Scholar
  58. Youssef MA, Sefain MZ, El-Kalyoubi SF (1989) Thermal behaviour of cellulose acetate. Thermochim Acta 150:33–38. CrossRefGoogle Scholar
  59. Zhang J, Xu Z, Shan M, Zhou B, Li Y, Li B (2013) Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes. J Membr Sci 448:81–92. CrossRefGoogle Scholar
  60. Zhu K, Wang G (2018) Fabrication of high-performance ultrafiltration membranes using zwitterionic carbon nanotubes and polyethersulfone. High Perform Polym 30(5):602–611. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centre for Textile Science and Technology (2C2T), Department of Textile EngineeringUniversity of MinhoGuimarãesPortugal

Personalised recommendations