Advertisement

Cellulose

pp 1–13 | Cite as

Surface-modified paper-based SERS substrates for direct-droplet quantitative determination of trace substances

  • Li Xian
  • Ruiyun You
  • Dechan Lu
  • Changji Wu
  • Shangyuan Feng
  • Yudong LuEmail author
Original Research
  • 31 Downloads

Abstract

In this study, we developed a simple, inexpensive and easily fabricable paper-based SERS substrate with high sensitivity and reproducibility. The filter paper has natural pleats and small pores that allow the metal nanoparticles to be deposited and arranged on the paper to form large area SERS ‘active sites’. Silver nanoparticles can be embedded and grown on cellulose nanocrystals framework through the in situ reduction to form cellulose nanocrystal–silver (CNC–Ag) composites, which are coated on the filter paper to form composite paper-based substrates. The CNC–Ag composites further filled the pores on the surface of the filter paper and improved the adhesive rate of metal nanoparticles, thus the reproducibility of the SERS sensor has been improved. At the same time, because it has the agglomerating effect on samples, the hydrophobic dodecyl mercaptan covered on paper-based substrates can improve detection limit of analyte. Furthermore, we demonstrate that paper-based SERS substrates can efficiently detect two substances, including phenylethanolamine A and metronidazole. The limits of detection for phenylethanolamine A and metronidazole were found to as low as 5 × 10−9 M and 2 × 10−7 M, respectively. The paper-based SERS substrates offer great potential for label-free and on-site detection of trace substances.

Keywords

Cellulose nanocrystal Paper-based SERS substrates Plasmonic nanocomposite Surface enhanced Raman scattering (SERS) Trace substances 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61575043, U1605253, 81741008), the Innovation Team Development Plan by the Ministry of Education of China (No. IRT15R10).

References

  1. Alvarez-Puebla R, Cui B, Bravo-Vasquez J-P, Veres T, Fenniri H (2007) Nanoimprinted SERS-active substrates with tunable surface plasmon resonances. J Phys Chem C 111(18):6720–6723CrossRefGoogle Scholar
  2. Canonico-May SA, Beavers KR, Melvin MJ, Alkilany AM, Duvall CL, Stone JW (2016) High conversion of HAuCl4 into gold nanorods: a re-seeding approach. J Colloid Interface Sci 463:229–232PubMedCrossRefGoogle Scholar
  3. Chang T-H, Chang Y-C, Chen C-M, Chuang K-W (2019) Optimizing pyramidal silicon substrates through the electroless deposition of Ag nanoparticles for high-performance surface-enhanced Raman scattering. Thin Solid Films 676:108–112CrossRefGoogle Scholar
  4. Chao B-K, Cheng H-H, Nien L-W, Chen M-J, Nagao T, Li J-H, Hsueh C-H (2015) Anti-reflection textured structures by wet etching and island lithography for surface-enhanced Raman spectroscopy. Appl Surf Sci 357:615–621CrossRefGoogle Scholar
  5. Eshkeiti A, Narakathu BB, Reddy ASG, Moorthi A, Atashbar MZ, Rebrosova E, Rebros M, Joyce M (2012) Detection of heavy metal compounds using a novel inkjet printed surface enhanced Raman spectroscopy (SERS) substrate. Sens Actuat B Chem 171–172:705–711CrossRefGoogle Scholar
  6. Han C, Chen J, Wu X, Huang YW, Zhao Y (2014) Detection of metronidazole and ronidazole from environmental samples by surface enhanced Raman spectroscopy. Talanta 128:293–298PubMedCrossRefGoogle Scholar
  7. Homma T, Kato A, Kunimoto M, Yanagisawa M (2018) Direct observation of the diffusion behavior of an electrodeposition additive in through-silicon via using in situ surface enhanced Raman spectroscopy. Electrochem Commun 88:34–38CrossRefGoogle Scholar
  8. Huang L, Wu C, Xie L, Yuan X, Wei X, Huang Q, Chen Y, Lu Y (2019) Silver-nanocellulose composite used as SERS substrate for detecting carbendazim. Nanomaterials (Basel) 9(3):E355CrossRefGoogle Scholar
  9. Ivanov E, Ando RA, Corio P (2016) Solid-liquid-liquid extraction as an approach to the sensitive detection of a hydrophobic pollutant through surface-enhanced Raman spectroscopy. Vib Spectrosc 87:116–122CrossRefGoogle Scholar
  10. Izquierdo-Lorenzo I, Sanchez-Cortes S, Garcia-Ramos JV (2010) Adsorption of beta-adrenergic agonists used in sport doping on metal nanoparticles: a detection study based on surface-enhanced Raman scattering. Langmuir 26(18):14663–14670PubMedCrossRefGoogle Scholar
  11. Jiang Y, Sun D-W, Pu H, Wei Q (2018) Surface enhanced Raman spectroscopy (SERS): a novel reliable technique for rapid detection of common harmful chemical residues. Trends Food Sci Technol 75:10–22CrossRefGoogle Scholar
  12. Kim AN, Lim H, Lee HN, Park YM, Yoo B, Kim H-J (2018) Large-area and cost-effective fabrication of Ag-coated polymeric nanopillar array for surface-enhanced Raman spectroscopy. Appl Surf Sci 446:114–121CrossRefGoogle Scholar
  13. Kim D, Ko Y, Kwon G, Kim U-J, Lee JH, You J (2019) 2,2,6,6-tetramethylpiperidine-1-oxy-oxidized cellulose nanofiber-based nanocomposite papers for facile in situ surface-enhanced Raman scattering detection. ACS Sustain Chem Eng 7(18):15640–15647CrossRefGoogle Scholar
  14. Kong D, Liang B, Yun H, Cheng H, Ma J, Cui M, Wang A, Ren N (2015) Cathodic degradation of antibiotics: characterization and pathway analysis. Water Res 72:281–292PubMedCrossRefGoogle Scholar
  15. Kuntumalla MK, Elfimchev S, Chandran M, Hoffman A (2018) Raman scattering of nitrogen incorporated diamond thin films grown by hot filament chemical vapor deposition. Thin Solid Films 653:284–292CrossRefGoogle Scholar
  16. Kwon G, Kim J, Kim D, Ko Y, Yamauchi Y, You J (2019) Nanoporous cellulose paper-based SERS platform for multiplex detection of hazardous pesticides. Cellulose 26(8):4935–4944CrossRefGoogle Scholar
  17. Li K, Liang A, Jiang C, Li F, Liu Q, Jiang Z (2012) A stable and reproducible nanosilver-aggregation-4-mercaptopyridine surface-enhanced Raman scattering probe for rapid determination of trace Hg2+. Talanta 99:890–896PubMedCrossRefPubMedCentralGoogle Scholar
  18. Li Z, Zhu K, Zhao Q, Meng A (2016) The enhanced SERS effect of Ag/ZnO nanoparticles through surface hydrophobic modification. Appl Surf Sci 377:23–29CrossRefGoogle Scholar
  19. Li D, Duan H, Ma Y, Deng W (2018a) Headspace-sampling paper-based analytical device for colorimetric/surface-enhanced Raman scattering dual sensing of sulfur dioxide in wine. Anal Chem 90(9):5719–5727PubMedCrossRefPubMedCentralGoogle Scholar
  20. Li D, Ma Y, Duan H, Deng W, Li D (2018b) Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite. Biosens Bioelectron 99:389–398PubMedCrossRefGoogle Scholar
  21. Liang P, Zhou YF, Xu BJ, Xuan Y, Xia J, Wang D, Zhang D, Ye JM, Yu Z, Jin SZ (2019) SERS-based vibration model and trace detection of drug molecules: theoretical and experimental aspects. Spectrochim Acta A Mol Biomol Spectrosc 215:168–175PubMedCrossRefGoogle Scholar
  22. Luo W, Chen M, Hao N, Huang X, Zhao X, Zhu Y, Yang H, Chen X (2019) In situ synthesis of gold nanoparticles on pseudo-paper films as flexible SERS substrate for sensitive detection of surface organic residues. Talanta 197:225–233PubMedCrossRefGoogle Scholar
  23. Malekzad H, Jouyban A, Hasanzadeh M, Shadjou N, de la Guardia M (2017) Ensuring food safety using aptamer based assays: electroanalytical approach. Trends Anal Chem 94:77–94CrossRefGoogle Scholar
  24. McNay G, Eustace D, Smith WE, Faulds K, Graham D (2011) Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl Spectrosc 65(8):825–837PubMedCrossRefGoogle Scholar
  25. Ogundare SA, van Zyl WE (2018) Nanocrystalline cellulose as reducing- and stabilizing agent in the synthesis of silver nanoparticles: application as a surface-enhanced Raman scattering (SERS) substrate. Surf Interfaces 13:1–10CrossRefGoogle Scholar
  26. Ogundare SA, van Zyl WE (2019a) Amplification of SERS “hot spots” by silica clustering in a silver-nanoparticle/nanocrystalline-cellulose sensor applied in malachite green detection. Colloids Surf A Physicochem Eng Asp 570:156–164CrossRefGoogle Scholar
  27. Ogundare SA, van Zyl WE (2019b) A review of cellulose-based substrates for SERS: fundamentals, design principles, applications. Cellulose 26(11):6489–6528CrossRefGoogle Scholar
  28. Reokrungruang P, Chatnuntawech I, Dharakul T, Bamrungsap S (2019) A simple paper-based surface enhanced Raman scattering (SERS) platform and magnetic separation for cancer screening. Sens Actuat B Chem 285:462–469CrossRefGoogle Scholar
  29. Sarfo DK, Izake EL, O’Mullane AP, Ayoko GA (2019) Fabrication of nanostructured SERS substrates on conductive solid platforms for environmental application. Crit Rev Environ Sci Technol 49(14):1294–1329CrossRefGoogle Scholar
  30. Sun X, Wang N, Li H (2013) Deep etched porous Si decorated with Au nanoparticles for surface-enhanced Raman spectroscopy (SERS). Appl Surf Sci 284:549–555CrossRefGoogle Scholar
  31. Tian ZQ (2005) Surface-enhanced Raman spectroscopy: advancements and applications. J Raman Spectrosc 36(6–7):466–470CrossRefGoogle Scholar
  32. Wang J, Huang L, Zhai L, Yuan L, Zhao L, Zhang W, Shan D, Hao A, Feng X, Zhu J (2012) Hot spots engineering in hierarchical silver nanocap array for surface-enhanced Raman scattering. Appl Surf Sci 261:605–609CrossRefGoogle Scholar
  33. Wang J, Zhou W, Zhang J, Yang M, Ji C, Shao X, Shi L (2014) High-fidelity replica molding for large-area PMMA 3D nanostructures with high performance surface-enhanced Raman scattering and hydrophobicity. Microelectronic Eng 115:2–5CrossRefGoogle Scholar
  34. Wang X, Hao W, Zhang H, Pan Y, Kang Y, Zhang X, Zou M, Tong P, Du Y (2015) Analysis of polycyclic aromatic hydrocarbons in water with gold nanoparticles decorated hydrophobic porous polymer as surface-enhanced Raman spectroscopy substrate. Spectrochim Acta A Mol Biomol Spectrosc 139:214–221PubMedCrossRefGoogle Scholar
  35. Wei H, Rodriguez K, Renneckar S, Leng W, Vikesland PJ (2015) Preparation and evaluation of nanocellulose-gold nanoparticle nanocomposites for SERS applications. Analyst 140(16):5640–5649PubMedCrossRefGoogle Scholar
  36. Wen F-Y, Chen P-S, Liao T-W, Juang Y-J (2018) Microwell-assisted filtration with anodic aluminum oxide membrane for Raman analysis of algal cells. Algal Res 33:412–418CrossRefGoogle Scholar
  37. Weng G, Feng Y, Zhao J, Li J, Zhu J, Zhao J (2019) Size dependent SERS activity of Ag triangular nanoplates on different substrates: glass vs paper. Appl Surf Sci 478:275–283CrossRefGoogle Scholar
  38. Wong-ek K, Eiamchai P, Horprathum M, Patthanasettakul V, Limnonthakul P, Chindaudom P, Nuntawong N (2010) Silver nanoparticles deposited on anodic aluminum oxide template using magnetron sputtering for surface-enhanced Raman scattering substrate. Thin Solid Films 518(23):7128–7132CrossRefGoogle Scholar
  39. Xu Y, Man P, Huo Y, Ning T, Li C, Man B, Yang C (2018) Synthesis of the 3D AgNF/AgNP arrays for the paper-based surface enhancement Raman scattering application. Sens Actuat B Chem 265:302–309CrossRefGoogle Scholar
  40. Yang Y, Long K, Kong F, Fan J, Qiu T (2014) Surface-enhanced Raman spectroscopy on transparent fume-etched ITO-glass surface. Appl Surf Sci 309:250–254CrossRefGoogle Scholar
  41. Zhang L (2013) Self-assembly Ag nanoparticle monolayer film as SERS substrate for pesticide detection. Appl Surf Sci 270:292–294CrossRefGoogle Scholar
  42. Zhang C, You T, Yang N, Gao Y, Jiang L, Yin P (2019) Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine. Food Chem 287:363–368PubMedCrossRefGoogle Scholar
  43. Zhou H, Yang D, Ivleva NP, Mircescu NE, Niessner R, Haisch C (2014) SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal Chem 86(3):1525–1533PubMedCrossRefGoogle Scholar
  44. Zhou Q, Thokchom AK, Kim D-J, Kim T (2017) Inkjet-printed Ag micro-/nanostructure clusters on Cu substrates for in situ pre-concentration and surface-enhanced Raman scattering. Sens Actuat B Chem 243:176–183CrossRefGoogle Scholar
  45. Zong C, Xu M, Xu LJ, Wei T, Ma X, Zheng XS, Hu R, Ren BJCR (2018) Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem Rev 139(10):272Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Li Xian
    • 1
  • Ruiyun You
    • 1
  • Dechan Lu
    • 1
  • Changji Wu
    • 1
  • Shangyuan Feng
    • 2
  • Yudong Lu
    • 1
    Email author
  1. 1.College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer MaterialsFujian Normal UniversityFuzhouChina
  2. 2.Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Digital Fujian Internet-of-Things Laboratory of Environment MonitoringFujian Normal UniversityFuzhouPeople’s Republic of China

Personalised recommendations