pp 1–16 | Cite as

Optical properties of the nanocomposite of molybdenum disulphide monolayers/cellulose nanofibrils

  • A. C. E. Camilo
  • A. J. de MenezesEmail author
  • M. A. Pereira-da-Silva
  • F. E. G. Guimarães
  • R. H. Longaresi
Original Research


Studies on nanocomposites of cellulose nanofibrils (CNFs) and transition-metal dichalchogenides (TMD) monolayers are still rare in the literature. Among the TMDs, the molybdenum disulphide (MoS2) monolayers have been employed in a great variety of applications, such as sensors, photovoltaic devices, and transistors. The synthesis of the MoS2/CNF nanocomposite was performed through a liquid exfoliation process and the optical and morphological properties of MoS2/CNF films were characterized by confocal microscopy and UV–Vis absorption and the nanocomposite morphology was characterized by atomic force microscopy (AFM) and by field emission scanning electron microscopy (FESEM) techniques. UV–Vis measurements showed that the CNF addition caused a narrowing in the MoS2 flakes absorption band at 1.89 eV and 2.0 eV energy values, similar to those present in a MoS2 monolayer. Morphological analyses of the MoS2/CNF composite by FESEM indicate that the CNF addition reduces the MoS2 flakes anisotropy and corroborates the absorption narrowing bands. Stationary Photoluminescence (PL) and Second Harmonic Generation (SHG) were carried out by Confocal Microscopy indicating the presence of few layers composing the MoS2 flakes. The PL and SHG arise due to the liquid exfoliation process, which produces heterogenic flakes with randomic numbers of MoS2 layers. Results showed that the addition of up to 10% w/w of CNFs gives rise to a high fluorescence gain. However, the amount of SH regions increases as a function of the addition of CNFs above 10% w/w.

Graphic abstract


Molybdenum disulphide Cellulose nanofibrils Nanocomposite Photoluminescence Second harmonic generation 



We would like to thank CAPES for granting the scholarship; to the Group of Polymers of the Institute of Physics of São Carlos - USP for the use of all laboratory infrastructure, and the Acil Weber Company for the equipment loan (VCX 500 Ultrasonic Microprocessor).


  1. Backes C, Hanlon D, Szydlowska BM et al (2016) Preparation of liquid-exfoliated transition metal dichalcogenide nanosheets with controlled size and thickness: a state of the art protocol. J Vis Exp. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Chhowalla M, Shin HS, Eda G et al (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275. CrossRefPubMedGoogle Scholar
  3. Chinga-Carrasco G (2011) Cellulose fibers, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Res Lett 6:1–7. CrossRefGoogle Scholar
  4. Choi W, Choudhary N, Han GH et al (2017) Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater Today 20:116–130. CrossRefGoogle Scholar
  5. Eda G, Yamaguchi H, Voiry D et al (2011) Photoluminescence from chemically exfoliated MoS 2. Nano Lett 11:5111–5116. CrossRefPubMedGoogle Scholar
  6. Ghatak S, Pal AN, Ghosh A (2011) Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5:7707–7712. CrossRefPubMedGoogle Scholar
  7. Gong Y, Lin Z, Ye G et al (2015) Te-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano 26:1–18. CrossRefGoogle Scholar
  8. Hao R, Tedstone AA, Lewis DJ et al (2017) Property self-optimization during wear of MoS 2. ACS Appl Mater Interfaces 9:1953–1958. CrossRefPubMedGoogle Scholar
  9. Hsu W-T, Zhao Z-A, Li L-J et al (2014) Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano 8:2951–2958. CrossRefPubMedGoogle Scholar
  10. Kaith BS, Mittal H, Jindal R et al (2011) Environment benevolent biodegradable polymers: synthesis, biodegradability, and applications. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin Heidelberg, pp 425–451CrossRefGoogle Scholar
  11. Kumirska J, Czerwicka M, Kaczyński Z et al (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 8:1567–1636. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Lee HS, Min S-W, Chang Y-G et al (2012) MoS 2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett 12:3695–3700. CrossRefPubMedGoogle Scholar
  13. Li H, Wu J, Yin Z et al (2014a) Preparation and applications of mechanically exfoliated single layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res 47:1067–1075. CrossRefPubMedGoogle Scholar
  14. Li Y, Zhu H, Shen F et al (2014b) Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose. Adv Funct Mater 24:7366–7372. CrossRefGoogle Scholar
  15. Lin X, Liu Y, Wang K et al (2018) Two-dimensional pyramid-like WS 2 layered structures for highly efficient edge second-harmonic generation. ACS Nano 12:689–696. CrossRefPubMedGoogle Scholar
  16. Liu H, Xu L, Liu W et al (2018) Production of mono- to few-layer MoS2 nanosheets in isopropanol by a salt-assisted direct liquid-phase exfoliation method. J Colloid Interface Sci 515:27–31. CrossRefPubMedGoogle Scholar
  17. Mak KF, Lee C, Hone J et al (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett. CrossRefPubMedGoogle Scholar
  18. Malard LM, Alencar TV, Barboza APM et al (2013) Observation of intense second harmonic generation from MoS2 atomic crystals. Phys Rev B. CrossRefGoogle Scholar
  19. Manzeli S, Ovchinnikov D, Pasquier D et al (2017) 2D transition metal dichalcogenides. Nat Rev Mater 2:17033. CrossRefGoogle Scholar
  20. May P, Khan U, Hughes JM et al (2012) Role of solubility parameters in understanding the steric stabilization of exfoliated two-dimensional nanosheets by adsorbed polymer. J Phys Chem C 116:11393–11400. CrossRefGoogle Scholar
  21. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. 4:173–207. CrossRefGoogle Scholar
  22. Ooi Y, Hanasaki I, Mizumura D, Matsuda Y (2017) Suppressing the coffee-ring effect of colloidal droplets by dispersed cellulose nanofibers. Sci Technol Adv Mater 18:316–324. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ponraj JS, Xu Z-Q, Dhanabalan SC et al (2016) Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology 27:462001. CrossRefPubMedGoogle Scholar
  24. Radisavljevic B, Radenovic A, Brivio J et al (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150. CrossRefPubMedGoogle Scholar
  25. Rasmussen FA, Thygesen KS (2015) Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J Phys Chem C 119:13169–13183. CrossRefGoogle Scholar
  26. Rehan M, Barhoum A, Khattab TA et al (2019) Colored, photocatalytic, antimicrobial and UV-protected viscose fibers decorated with Ag/Ag2CO3 and Ag/Ag3PO4 nanoparticles. Cellulose 26:5437–5453. CrossRefGoogle Scholar
  27. Savan A, Pflüger E, Voumard P et al (2000) Modern solid lubrication: recent developments and applications of MoS2. Lubr Sci 12:185–203. CrossRefGoogle Scholar
  28. Splendiani A, Sun L, Zhang Y et al (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275. CrossRefPubMedGoogle Scholar
  29. Sundaram RS, Engel M, Lombardo A et al (2013) Electroluminescence in single layer MoS2. Nano Lett 13:1416–1421. CrossRefPubMedGoogle Scholar
  30. Terrones H, Corro ED, Feng S et al (2015) New first order Raman-active modes in few layered transition metal dichalcogenides. Sci Rep. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Tonndorf P, Schmidt R, Böttger P et al (2013) Photoluminescence emission and Raman response of monolayer MoS_2, MoSe_2, and WSe_2. Opt Express 21:4908. CrossRefPubMedGoogle Scholar
  32. Torvinen K, Sievänen J, Hjelt T, Hellén E (2012) Smooth and flexible filler-nanocellulose composite structure for printed electronics applications. Cellulose 19:821–829. CrossRefGoogle Scholar
  33. Traversi F, Raillon C, Benameur SM et al (2013) Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nat Nanotechnol 8:939–945. CrossRefPubMedGoogle Scholar
  34. Tu Y, Lv M, Xiu P et al (2013) Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 8:594–601. CrossRefPubMedGoogle Scholar
  35. Ullah H, Santos HA, Khan T (2016) Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23:2291–2314. CrossRefGoogle Scholar
  36. Ullah MS, Yousuf AHB, Es-Sakhi AD, Chowdhury MH (2018) Analysis of optical and electronic properties of MoS2 for optoelectronics and FET applications. Lakeland, USA, p 020001Google Scholar
  37. Visic B, Dominko R, Gunde M et al (2011) Optical properties of exfoliated MoS2 coaxial nanotubes - analogues of graphene. Nanoscale Res Lett 6:593. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Yin J, Li X, Yu J et al (2014) Generating electricity by moving a droplet of ionic liquid along graphene. Nat Nanotechnol 9:378–383. CrossRefPubMedGoogle Scholar
  39. Yoon Y, Ganapathi K, Salahuddin S (2011) How good can monolayer MoS2 transistors be? Nano Lett 11:3768–3773. CrossRefPubMedGoogle Scholar
  40. Zeng Z, Yin Z, Huang X et al (2017) Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem Int 50:11093–11097. CrossRefGoogle Scholar
  41. Zhang C, Kc S, Nie Y et al (2016) Charge mediated reversible metal-insulator transition in monolayer MoTe2 and Wx Mo1–x Te2 alloy. ACS Nano 10:7370–7375. CrossRefPubMedGoogle Scholar
  42. Zhao M, Ye Z, Suzuki R et al (2016) Atomically phase-matched second-harmonic generation in a 2D crystal. Light Sci Appl 5:e16131–e16131. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zhao Y, Dang W, Ma Q et al (2019) Facile preparation of fluorescence-labelled nanofibrillated cellulose (NFC) toward revealing spatial distribution and the interface. Cellulose 26:4345–4355. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.UFSCar – Universidade Federal de São CarlosSorocabaBrazil
  2. 2.Institute of Physics of São Carlos, IFSC/USPSão CarlosBrazil
  3. 3.Paulista Central University Center, UNICEPSão CarlosBrazil

Personalised recommendations