pp 1–10 | Cite as

Dimaval as an efficient ligand for binding Ru(III) on cross-linked chitosan aerogel: synthesis, characterisation and catalytic investigation

  • Amal Al-AzmiEmail author
  • Sajjad Keshipour
Original Research


Ru(III)/dimaval was deposited on chitosan aerogel through the ionic interactions of the proton exchange between the dimaval sulfonic acid and chitosan aerogel amine group. After characterization, the composite was used in the oxidation reaction of certain alkylarenes, aliphatic and benzylic alcohols as well as cyclohexanol. High conversions and excellent selectivities were obtained for the solvent-free reactions using a low catalyst amount under aerobic conditions at 80 °C for 2–5 h. The organometallic compound is applicable as a heterogeneous catalyst having high chemical stability and recyclability up to eight times.

Graphic abstract


Dimaval Chitosan aerogel Ruthenium Heterogeneous catalysis Oxidation 



Chitosan aerogel


Ru(III)-dimaval support on chitosan aerogel


Scanning electron microscope


X-ray diffraction


X-ray photoelectron spectroscopy


Flame atomic absorption spectroscopy




Gas chromatography



We gratefully acknowledge the facilities provided by Kuwait University through projects GS 01/05, GS 03/01, GS 01/03 and GE 01/07.

Supplementary material

10570_2019_2838_MOESM1_ESM.doc (474 kb)
Supplementary material 1 (DOC 474 kb)


  1. Baig RBN, Nadagouda MN, Varma RS (2014) Ruthenium on chitosan: a recyclable heterogeneous catalyst for aqueous hydration of nitriles to amides. Green Chem 16:2122–2127CrossRefGoogle Scholar
  2. Barak G, Dakka J, Sasson Y (1988) Selective oxidation of alcohols by a H2O2–RuCl3 system under phase-transfer conditions. J Org Chem 53:3553–3558CrossRefGoogle Scholar
  3. Bilgrien C, Davis S, Drago RS (1987) The selective oxidation of primary alcohols to aldehydes by oxygen employing a trinuclear ruthenium carboxylate catalyst. J Am Chem Soc 109:3786–3787CrossRefGoogle Scholar
  4. Brustolin L, Nardon C, Pettenuzzo N, Zuin Fantoni N, Quarta S, Chiara F, Gambalunga A, Trevisan A, Marchiò L, Pontissoc P, Fregona D (2018) Synthesis, chemical characterization and cancer cell growth-inhibitory activities of Cu(II) and Ru(III) aliphatic and aromatic dithiocarbamato complexes. Dalton Trans 47:15477–15486PubMedCrossRefPubMedCentralGoogle Scholar
  5. Chang X, Chen D, Jiao X (2008) Chitosan-based aerogels with high adsorption performance. J Phys Chem B 112:7721–7725PubMedCrossRefPubMedCentralGoogle Scholar
  6. Chauhan S (2015) Modification of chitosan for sorption of metal ions. J Chem Pharm Res 7:49–55Google Scholar
  7. Che CM, Yip WP, Yu WY (2006) Ruthenium-catalyzed oxidation of alkenes, alkynes, and alcohols to organic acids with aqueous hydrogen peroxide. Chem Asian J 1:453–458PubMedCrossRefPubMedCentralGoogle Scholar
  8. El Kadib A (2005) Chitosan as a sustainable organocatalyst: a concise overview. Chemsuschem 8:217–244CrossRefGoogle Scholar
  9. Follmann HDM, Martins AF, Nobre TM, Bresolin JD, Cellet TSP, Valderrama P, Correa DS, Muniz EC, Oliveira ON Jr (2016) Extent of shielding by counterions determines the bactericidal activity of N,N,N-trimethyl chitosan salts. Carbohydr Polym 137:418–425PubMedCrossRefPubMedCentralGoogle Scholar
  10. Gore ES (1983) Ruthenium-catalyzed oxidations of organic compounds. Platin Metals Rev 27:111–125Google Scholar
  11. Guibal E (2005) Heterogeneous catalysis on chitosan-based materials: a review. Prog Polym Sci 30:71–109CrossRefGoogle Scholar
  12. Guo H, Liu WD, Yin G (2011) Aerobic oxidation of alcohols to aldehydes and ketones using ruthenium(III)/Et3N catalyst. Appl Organomet Chem 25:836–842CrossRefGoogle Scholar
  13. Guo DM, Ana QD, Xiao ZY, Zhai SR, Yang DJ (2018) Efficient removal of Pb(II), Cr(VI) and organic dyes by polydopamine modified chitosan aerogels. Carbohydr Polym 202:306–314PubMedCrossRefGoogle Scholar
  14. Kamata K, Kasai J, Yamaguchi K, Mizuno N (2004) Efficient heterogeneous oxidation of alkylarenes with molecular oxygen. Org Lett 6:3577–3580PubMedCrossRefPubMedCentralGoogle Scholar
  15. Katritzky R, Meth-Cohn O, Rees CW, Pattenden G (1995) Comprehensive organic functional group transformations. Elsevier Science, OxfordGoogle Scholar
  16. Keshipour S, Adak K (2017) Magnetic D-penicillamine-functionalized cellulose as a new heterogeneous support for cobalt(II) in green oxidation of ethylbenzene to acetophenone. Appl Organomet Chem 31:e3774CrossRefGoogle Scholar
  17. Keshipour S, Khezerloo M (2018) Au-dimercaprol functionalized cellulose aerogel: synthesis, characterization and catalytic application. Appl Organomet Chem 32:e4255CrossRefGoogle Scholar
  18. Keshipour S, Mirmasoudi SS (2018) Cross-linked chitosan aerogel modified with Au: synthesis, characterization and catalytic application. Carbohydr Polym 196:494–500PubMedCrossRefPubMedCentralGoogle Scholar
  19. Keshipour S, Shaabani A (2014) Copper(I) and palladium nanoparticles supported on ethylenediamine-functionalized cellulose as an efficient catalyst for the 1,3-dipolar cycloaddition/direct arylation sequence. Appl Organomet Chem 28:116–119CrossRefGoogle Scholar
  20. Keshipour S, Shojaei S, Shaabani A (2013) Palladium nano-particles supported on ethylenediaminefunctionalized cellulose as a novel and efficient catalyst for the Heck and Sonogashira couplings in water. Cellulose 20:973–980CrossRefGoogle Scholar
  21. Keshipour S, Ahmadi F, Seyyedi B (2017) Chitosan-modified Pd(II)-d-penicillamine: preparation, characterization, and catalyst application. Cellulose 24:1455–1462CrossRefGoogle Scholar
  22. Kim YH, Hwang SK, Kim JW, Lee YS (2014) Zirconia-supported ruthenium catalyst for efficient aerobic oxidation of alcohols to aldehydes. Ind Eng Chem Res 53:12548–12552CrossRefGoogle Scholar
  23. Kyzas GZ, Bikiaris DN (2015) Recent modifications of chitosan for adsorption applications: a critical and systematic review. Mar Drugs 13:312–337PubMedPubMedCentralCrossRefGoogle Scholar
  24. Larock RC (1999) In comprehensive organic transformations: a guide to functional group preparations, 2nd edn. Wiley-VCH, New YorkGoogle Scholar
  25. Lazareva VI, Lazarev AI (1986) Spectrophotometric determination of ruthenium with unithiol. Zavodsk Lab 51:1075–1080Google Scholar
  26. Li A, Lin R, Lin C, He B, Zheng T, Lu L, Cao Y (2016) An environment-friendly and multi-functional absorbent from chitosan for organic pollutants and heavy metal ion. Carbohydr Polym 148:272–280PubMedCrossRefPubMedCentralGoogle Scholar
  27. Maleki A, Ghamari N, Kamalzare M (2014) Chitosan-supported Fe3O4 nanoparticles: a magnetically recyclable heterogeneous nanocatalyst for the syntheses of multifunctional benzimidazoles and benzodiazepines. RSC Adv 4:9416–9423CrossRefGoogle Scholar
  28. Maleki A, Agaei M, Ghamari N (2016) Facile synthesis of tetrahydrobenzoxanthenones via a one-pot three-component reaction using an eco-friendly and magnetized biopolymer chitosan-based heterogeneous nanocatalyst. Appl Organomet Chem 30:939–942CrossRefGoogle Scholar
  29. Mannel DS, Stahl SS, Root TW (2014) Continuous flow aerobic alcohol oxidation reactions using a heterogeneous Ru(OH)x/Al2O3 catalyst. Org Process Res Dev 18:1503–1508PubMedPubMedCentralCrossRefGoogle Scholar
  30. Marko IE, Giles PR, Tsukazaki M, Chellé-Regnaut I, Urch CJ, Brown SM (1997) Efficient, aerobic, ruthenium-catalyzed oxidation of alcohols into aldehydes and ketones. J Am Chem Soc 119:12661–12662CrossRefGoogle Scholar
  31. Morgan DJ (2015) Resolving ruthenium: XPS studies of common ruthenium mate-rials. Surf Interface Anal 47:1072–1079CrossRefGoogle Scholar
  32. Murahashi S, Naota T, Hirai N (1993) Aerobic oxidation of alcohols with ruthenium-cobalt bimetallic catalyst in the presence of aldehydes. J Org Chem 58:7318–7319CrossRefGoogle Scholar
  33. Pestov A, Bratskaya S (2016) Chitosan and its derivatives as highly efficient polymer ligands. Molecules 21:330–365PubMedPubMedCentralCrossRefGoogle Scholar
  34. Punniyamurthy T, Velusamy S, Iqbal J (2005) Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem Rev 105:2329–2363PubMedCrossRefGoogle Scholar
  35. Rinki K, Dutta PK, Hunt A, Macquarrie DJ, Clark JH (2011) Chitosan aerogels exhibiting high surface area for biomedical application: preparation, characterization, and antibacterial study. Int J Polym Mater 60:988–999CrossRefGoogle Scholar
  36. Rooney J (2007) The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology 234:145–156PubMedCrossRefPubMedCentralGoogle Scholar
  37. Salhi B, Vaurette F, Grandidier B, Stievenard D, Melnyk O, Coffinier Y, Boukherroub R (2009) The collagen assisted self-assembly of silicon nanowires. Nanotechnology 20:235601–235607PubMedCrossRefPubMedCentralGoogle Scholar
  38. Takeshita S, Yoda S (2018) Upscaled preparation of trimethylsilylated chitosan aerogel. Ind Eng Chem Res 57:10421–10430CrossRefGoogle Scholar
  39. Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93CrossRefGoogle Scholar
  40. Wolfson A, Wuyts S, De Vos DE, Vankelecom IFJ, Jacobs PA (2002) Aerobic oxidation of alcohols with ruthenium catalysts in ionic liquids. Tetrahedron Lett 43:8107–8110CrossRefGoogle Scholar
  41. Yamaguchi K, Mizuno N (2002) Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular oxygen. Angew Chem Int Ed 14:4720–4724CrossRefGoogle Scholar
  42. Yang J, Xia Y, Xu P, Chen B (2018) Super-elastic and highly hydrophobic/superoleophilic sodium alginate/cellulose aerogel for oil/water separation. Cellulose 25:3533–3544CrossRefGoogle Scholar
  43. Yang WJ, Chun Yin Yuen A, Li A, Lin B, Bo Yuan Chen T, Yang W, Lu HD, Heng Yeoh G (2019) Recent progress in bio-based aerogel absorbents for oil/water separation. Cellulose 26:6449–6476CrossRefGoogle Scholar
  44. Zeng XM, Chen JM, Yoshimura A, Middleton K, Zhdankin VV (2011) SiO2-supported RuCl3/3-(dichloroiodo)benzoic acid: green catalytic system for the oxidation of alcohols and sulfides in water. RSC Adv 1:973–977CrossRefGoogle Scholar
  45. Zhang C, Zhang H, Li R, Xing Y (2017) Morphology and adsorption properties of chitosan sulfate salt microspheres prepared by a microwave-assisted method. RSC Adv 7:48189–48198CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Chemistry DepartmentKuwait UniversitySafatKuwait
  2. 2.Department of Nanochemistry, Nanotechnology Research CenterUrmia UniversityUrmiaIran

Personalised recommendations