Advertisement

Cellulose

pp 1–14 | Cite as

Flexible, stable and sensitive surface-enhanced Raman scattering of graphite/titanium-cotton substrate for conformal rapid food safety detection

  • Jiangtao Xu
  • Xiaoting Li
  • Yuxiang Wang
  • Tao Hua
  • Ronghui Guo
  • Dagang Miao
  • Shouxiang JiangEmail author
Original Research

Abstract

Fabricating flexible, stable and highly reproducible surface-enhanced Raman scattering (SERS) active substrates is very important in furthering the development of practical SERS sensors. Nevertheless, the fabrication of such SERS substrates is rather challenging in processing conditions for both noble metal and semiconductor substrates. In this study, highly sensitive SERS detection is achieved by fabricating novel textile-based SERS substrates with a structure of graphite/titanium/cotton which are prepared by sputtering cotton fabric with titanium and graphite for different lengths of time at room temperature. The resultant samples show excellent SERS with an enhancement factor of 1.6 × 104, limit of detection of 4 × 10−7 as well as outstanding flexibility. The optimal SERS active substrate in this study also shows promising application for conformal rapid detection in the field of food safety testing.

Keywords

SERS Flexibility Conformal rapid detection Food safety Graphite and titanium 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10570_2019_2836_MOESM1_ESM.docx (11 mb)
Supplementary material 1 (DOCX 11,280 kb)

References

  1. Abbas A, Zhao Y, Zhou J, Wang X, Lin T (2013) Improving thermal conductivity of cotton fabrics using composite coatings containing graphene, multiwall carbon nanotube or boron nitride fine particles. Fibers Polym 14:1641–1649.  https://doi.org/10.1007/s12221-013-1641-y CrossRefGoogle Scholar
  2. Allen CS, Van Duyne RP (1981) Molecular generality of surface-enhanced Raman spectroscopy (SERS). A detailed investigation of the hexacyanoruthenate ion adsorbed on silver and copper electrodes. J Am Chem Soc 103:7497–7501.  https://doi.org/10.1021/ja00415a017 CrossRefGoogle Scholar
  3. Dieringer JA, Lettan RB, Scheidt KA, Van Duyne RP (2007) A frequency domain existence proof of single-molecule surface-enhanced raman spectroscopy. J Am Chem Soc 129:16249–16256.  https://doi.org/10.1021/ja077243c CrossRefPubMedGoogle Scholar
  4. El Qada EN, Allen SJ, Walker GM (2006) Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm. Chem Eng J 124:103–110.  https://doi.org/10.1016/j.cej.2006.08.015 CrossRefGoogle Scholar
  5. Fleischmann M, Hendra PJ, McQuillan A (1974) Raman spectra of pyridine adsorbed at a silver electrode. J Chem Phys Lett 26:163–166.  https://doi.org/10.1016/0009-2614(74)85388-1 CrossRefGoogle Scholar
  6. He D, Hu B, Yao QF, Wang K, Yu SH (2009) Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano 3:3993–4002.  https://doi.org/10.1021/nn900812f CrossRefPubMedGoogle Scholar
  7. Hu Y, Shi Y, Jiang H, Huang G, Li C (2013) Scalable preparation of ultrathin silica-coated Ag nanoparticles for SERS application. ACS Appl Mater Interfaces 5:10643–10649.  https://doi.org/10.1021/am402604h CrossRefPubMedGoogle Scholar
  8. Huh S, Park J, Kim YS, Kim KS, Hong BH, Nam JM (2011) UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering. ACS Nano 5:9799–9806.  https://doi.org/10.1021/nn204156n CrossRefPubMedGoogle Scholar
  9. Katrin K, Yang W, Harald K, Lev TP, Irving I, Ramachandra RD, Michael SF (1997) Single molecule detection using surface-enhanced raman scattering. Phys Rev Lett 78:1667.  https://doi.org/10.1103/PhysRevLett.78.1667 CrossRefGoogle Scholar
  10. Kneipp K, Wang Y, Kneipp H, Itzkan II, Dasari RR, Feld MS (1996) Population pumping of excited vibrational states by spontaneous surface-enhanced raman scattering. Phys Rev Lett 76:2444–2447.  https://doi.org/10.1103/PhysRevLett.76.2444 CrossRefPubMedGoogle Scholar
  11. Lal S, Grady NK, Goodrich GP, Halas NJ (2006) Profiling the near field of a plasmonic nanoparticle with Raman-based molecular rulers. Nano Lett 6:2338–2343.  https://doi.org/10.1021/nl061892p CrossRefPubMedGoogle Scholar
  12. Le Ru E, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111:13794–13803.  https://doi.org/10.1021/jp0687908 CrossRefGoogle Scholar
  13. Li X, Hu H, Li D, Shen Z, Xiong Q, Li S, Fan H (2012) Ordered array of gold semishells on TiO2 spheres: an ultrasensitive and recyclable SERS substrate. J ACS Appl Mater Interfaces 4:2180–2185.  https://doi.org/10.1021/am300189n CrossRefGoogle Scholar
  14. Ling X, Zhang J (2010) First-layer effect in graphene-enhanced Raman scattering. Small 6:2020–2025.  https://doi.org/10.1002/smll.201000918 CrossRefPubMedGoogle Scholar
  15. Ling X, Xie LM, Fang Y, Xu H, Zhang HL, Kong J, Dresselhaus MS, Zhang J, Liu ZF (2010) Can graphene be used as a substrate for Raman enhancement. Nano Lett 10:553–561CrossRefGoogle Scholar
  16. Ling X, Moura LG, Pimenta MA, Zhang J (2012) Charge-transfer mechanism in graphene-enhanced Raman scattering. J Phys Chem C 116:25112–25118.  https://doi.org/10.1021/jp3088447 CrossRefGoogle Scholar
  17. Ling X, Wu JX, Xie LM, Zhang J (2013) Graphene-thickness dependent graphene enhanced Raman spectroscopy. J Phys Chem C 117:2369–2376.  https://doi.org/10.1021/jp310564d CrossRefGoogle Scholar
  18. Maznichenko D, Venkatakrishnan K, Tan B (2012a) Stimulating multiple SERS mechanisms by a nanofibrous three-dimensional network structure of titanium dioxide (TiO2). J Phys Chem C 117:578–583.  https://doi.org/10.1021/jp310193a CrossRefGoogle Scholar
  19. Maznichenko D, Selvaganapathy P, Venkatakrishnan K, Tan B (2012b) TiO2 nanofibrous interface development for Raman detection of environmental pollutants. Appl Phys Lett 101:231602.  https://doi.org/10.1063/1.4769112 CrossRefGoogle Scholar
  20. McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 109:11279–11285.  https://doi.org/10.1021/jp050508u CrossRefPubMedGoogle Scholar
  21. Ni J, Lipert RJ, Dawson GB, Porter MD (1999) Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal Chem 71:4903–4908.  https://doi.org/10.1021/ac990616a CrossRefPubMedGoogle Scholar
  22. Qi D, Lu L, Wang L, Zhang J (2014) Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling. J Am Chem Soc 136:9886–9889.  https://doi.org/10.1021/ja5052632 CrossRefPubMedGoogle Scholar
  23. Qian X, Li J, Nie S (2009) Stimuli-responsive SERS nanoparticles: conformational control of plasmonic coupling and surface Raman enhancement. J Am Chem Soc 131:7540–7541.  https://doi.org/10.1021/ja902226z CrossRefPubMedPubMedCentralGoogle Scholar
  24. Rodriguez-Lorenzo L, Alvarez-Puebla RA, Pastoriza-Santos I, Mazzucco S, Stephan O, Kociak M, Liz-Marzan LM, Abajo FJG (2009) Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J Am Chem Soc 131:4616–4618.  https://doi.org/10.1021/ja809418t CrossRefPubMedGoogle Scholar
  25. Rycenga M, Cobley CM, Zeng J, Li WY, Moran CH, Zhang Q, Qin D, Xia YN (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712.  https://doi.org/10.1021/cr100275d CrossRefPubMedPubMedCentralGoogle Scholar
  26. Sharma B, Ma K, Glucksberg MR, Van Duyne RP (2013) Seeing through bone with surface-enhanced spatially offset Raman spectroscopy. J Am Chem Soc 135:17290–17293.  https://doi.org/10.1021/ja409378f CrossRefPubMedGoogle Scholar
  27. Su S, Zhang C, Yuwen LH, Chao J, Zuo XL, Liu XF, Song CY, Fan CH, Wang LH (2014) Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles. ACS Appl Mater Interfaces 6:18735–18741.  https://doi.org/10.1021/am5043092 CrossRefPubMedGoogle Scholar
  28. Tarakeshwar P, Finkelstein-Shapiro D, Hurst SJ, Rajh T, Mujica V (2011) Surface-enhanced Raman scattering on semiconducting oxide nanoparticles: oxide nature, size, solvent, and pH effects. J Phys Chem C 115:8994–9004.  https://doi.org/10.1021/jp202590e CrossRefGoogle Scholar
  29. Teguh JS, Liu F, Xing B, Yeow EK (2012) Surface-enhanced Raman scattering (SERS) of nitrothiophenol isomers chemisorbed on TiO2. Chem Asian J 7:975–981.  https://doi.org/10.1002/asia.201100934 CrossRefPubMedGoogle Scholar
  30. Wang Z, Zong S, Li W, Wang C, Xu S, Chen H, Cui Y (2012a) SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice. J Am Chem Soc 134:2993–3000.  https://doi.org/10.1021/ja208154m CrossRefPubMedGoogle Scholar
  31. Wang X, Shi W, She G, Mu L (2012b) Surface-enhanced Raman scattering (SERS) on transition metal and semiconductor nanostructures. Phys Chem Chem Phys 14:5891–5901.  https://doi.org/10.1039/C2CP40080D CrossRefPubMedGoogle Scholar
  32. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297.  https://doi.org/10.1146/annurev.physchem.58.032806.104607 CrossRefPubMedGoogle Scholar
  33. Wu K, Li T, Schmidt MS, Rindzevicius T, Boisen A, Ndoni S (2018) Gold nanoparticles sliding on recyclable nano hoodoos-engineered for surface-enhanced raman spectroscopy. Adv Funct Mater 28:1704818.  https://doi.org/10.1002/adfm.201704818 CrossRefGoogle Scholar
  34. Xu WG, Mao NN, Zhang J (2013) Graphene: a platform for surface-enhanced Raman spectroscopy. Small 9:1206–1224.  https://doi.org/10.1002/smll.201203097 CrossRefPubMedGoogle Scholar
  35. Xue X, Ji W, Mao Z, Mao H, Wang Y, Wang X, Ruan W, Zhao B, Lombardi JR (2012) Raman investigation of nanosized TiO2: effect of crystallite size and quantum confinement. J Phys Chem C 116:8792–8797.  https://doi.org/10.1021/jp2122196 CrossRefGoogle Scholar
  36. Yu XX, Cai HB, Zhang WH, Li XJ, Pan N, Luo Y, Wang XP, Hou JG (2011) Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS Nano 5:952–958.  https://doi.org/10.1021/nn102291j CrossRefPubMedGoogle Scholar
  37. Zhao J, Jensen L, Sung J, Zou S, Schatz GC, Van Duyne RP (2007) Interaction of plasmon and molecular resonances for Rhodamine 6G adsorbed on silver nanoparticles. J Am Chem Soc 129:7647–7656.  https://doi.org/10.1021/ja0707106 CrossRefPubMedGoogle Scholar
  38. Zhao J, Pinchuk AO, Mcmahon JM, Li SZ, Ausman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41:1710–1720.  https://doi.org/10.1021/ar800028j CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zhu Y, Kuang H, Xu L, Ma W, Peng C, Hua Y, Wang L, Xu C (2012) Gold nanorod assembly-based approach to toxin detection by SERS. J Mater Chem 22:2387–2391.  https://doi.org/10.1039/C2JM15238J CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jiangtao Xu
    • 1
  • Xiaoting Li
    • 1
  • Yuxiang Wang
    • 1
  • Tao Hua
    • 1
  • Ronghui Guo
    • 2
  • Dagang Miao
    • 3
  • Shouxiang Jiang
    • 1
    Email author
  1. 1.Institute of Textiles and ClothingThe Hong Kong Polytechnic UniversityHong KongChina
  2. 2.College of Light Industry, Textile and Food EngineeringSichuan UniversityChengduChina
  3. 3.Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and ClothingQingdao UniversityQingdaoChina

Personalised recommendations