pp 1–10 | Cite as

Synthesis of cellulose–silica nanocomposites by in situ biomineralization during fermentation

  • Yuxiang Zhao
  • Bianjing Sun
  • Tao Wang
  • Luyu Yang
  • Xuran Xu
  • Chuntao Chen
  • Feng Wei
  • Wenlu Lv
  • Lei ZhangEmail author
  • Dongping SunEmail author
Original Research


Bacteria cellulose (BC) generated by Acetobacter xylinum is made up of three-dimensional network of ribbon-shaped nanofibers and serves as a promising matrix for composite materials. Lately different types of nanoparticles have been adopted to modify BC via chemical reactions or physical adsorption, which usually require two steps or more and could not modify BC homogeneously. In this study we provide a one-step in situ biomineralization method during microbial fermentation to produce BC–silica nanocomposites with control over silica content. By statically culturing Acetobacter xylinum in the medium containing various amounts of sodium silicate, the slightly acidic culture environment due to consumption of glucose during fermentation could transfer sodium silicate to amorphous silica deposition that is evenly distributed on BC. The BC–silica nanocomposites obtained by this method possess superior mechanical properties such as high tensile strength and Young’s modulus, which are potential candidates for future biomedical applications. With the analysis of elemental abundance and chemical structures, we propose the synthetic mechanism of in situ production of BC–silica nanocomposites. This method is an efficient, controllable and environmental-friendly method to synthesize BC–silica nanocomposites, which also provides insights to other BC-inorganic hybrid composites and microbial modifications by microbial synthetic systems.

Graphic abstract


Bacteria cellulose Silica deposition Composite In situ Biomineralization 



This work was supported by Advanced Catalysis and Green Manufacturing Collaborative Innovation Center (Changzhou University), National Natural Science Foundation of China (Grants 51873087, 51803092 and 81801839), National Natural Science Foundation of China Jiangsu Province (BK20180490), the Fundamental Research Funds for the Central Universities (Grants 30920130121001 and 30919011221), China Postdoctoral Science Foundation (2018M632307, 2018M632309), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, China).

Supplementary material

10570_2019_2824_MOESM1_ESM.docx (175 kb)
Supplementary material 1 (DOCX 174 kb)


  1. Andrade FK, Moreira SMG, Domingues L, Gama FMP (2010) Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to RGD. J Biomed Mater Res Part A 92A(1):9–17CrossRefGoogle Scholar
  2. Angelova N, Hunkeler D (1999) Rationalizing the design of polymeric biomaterials. Trends Biotechnol 17(10):409–421PubMedCrossRefGoogle Scholar
  3. Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27(9):2141–2149PubMedCrossRefGoogle Scholar
  4. Barud HS, Assunção RMN, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2008) Bacterial cellulose–silica organic–inorganic hybrids. J Sol-Gel Sci Technol 46(3):363–367CrossRefGoogle Scholar
  5. Campano C, Balea A, Blanco A, Negro C (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23(1):57–91CrossRefGoogle Scholar
  6. Chen Y, Feng Y, Deveaux JG, Masoud MA, Chandra FS, Chen H, Zhang D, Feng L (2019) Biomineralization forming process and bio-inspired nanomaterials for biomedical application: a review. Minerals 9(2):68CrossRefGoogle Scholar
  7. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12PubMedCrossRefGoogle Scholar
  8. Gao M, Li J, Bao Z, Hu M, Nian R, Feng D, An D, Li X, Xian M, Zhang H (2019) A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nat Commun 10(1):437PubMedPubMedCentralCrossRefGoogle Scholar
  9. Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21(14):6642–6646PubMedCrossRefGoogle Scholar
  10. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35(2):261–270CrossRefGoogle Scholar
  11. Kanamori K, Aizawa M, Nakanishi K, Hanada T (2007) New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv Mater 19(12):1589–1593CrossRefGoogle Scholar
  12. Kettunen M, Silvennoinen RJ, Houbenov N, Nykänen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindström T, Ritala M, Ras RHA, Ikkala O (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21(3):510–517CrossRefGoogle Scholar
  13. Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci 94(17):9091PubMedCrossRefGoogle Scholar
  14. Litschauer M, Neouze M-A, Haimer E, Henniges U, Potthast A, Rosenau T, Liebner F (2011) Silica modified cellulosic aerogels. Cellulose 18(1):143–149CrossRefGoogle Scholar
  15. Lustri W, Barud H, Barud H, Peres M, Gutierrez J, Tercjak A, Oliveira Junior O, Ribeiro S (2015) Microbial cellulose—biosynthesis mechanisms and medical applications In: Cellulose—fundamental aspects and current trends. Matheus Poletto and Heitor Luiz Ornaghi Junior, IntechOpen. Google Scholar
  16. Mohammadkazemi F, Faria M, Cordeiro N (2016) In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: one-step process. Mater Sci Eng C 65:393–399CrossRefGoogle Scholar
  17. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37(20):7683–7687CrossRefGoogle Scholar
  18. Olsson RT, Azizi Samir MAS, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584PubMedCrossRefGoogle Scholar
  19. Pértile R, Moreira S, Andrade F, Domingues L, Gama M (2012) Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion. Biotechnol Prog 28(2):526–532PubMedCrossRefGoogle Scholar
  20. Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, de Souza CF, Martin AA, da Silva R, de Freitas RA (2017) Bacterial cellulose in biomedical applications: a review. Int J Biol Macromol 104:97–106PubMedCrossRefGoogle Scholar
  21. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55(1):35PubMedPubMedCentralGoogle Scholar
  22. Sai H, Xing L, Xiang J, Cui L, Jiao J, Zhao C, Li Z, Li F, Zhang T (2014) Flexible aerogels with interpenetrating network structure of bacterial cellulose–silica composite from sodium silicate precursor via freeze drying process. RSC Adv 4(57):30453–30461CrossRefGoogle Scholar
  23. Sheykhnazari S, Tabarsa T, Ashori A, Ghanbari A (2016) Bacterial cellulose composites loaded with SiO2 nanoparticles: dynamic-mechanical and thermal properties. Int J Biol Macromol 93:672–677PubMedCrossRefGoogle Scholar
  24. Stumpf TR, Yang X, Zhang J, Cao X (2018) In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Mater Sci Eng C 82:372–383CrossRefGoogle Scholar
  25. Sun B, Zi Q, Chen C, Zhang H, Gu Y, Liang G, Sun DP (2018) Study of specific metabolic pattern of Acetobacter xylinum NUST4.2 and bacterial cellulose production improvement. Cellul Chem Technol 52(9–10):795–801Google Scholar
  26. Wei L, McDonald AG, Stark NM (2015) Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide. Biomacromolecules 16(3):1040–1049PubMedCrossRefGoogle Scholar
  27. Yang G, Xie J, Deng Y, Bian Y, Hong F (2012) Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohyd Polym 87(4):2482–2487CrossRefGoogle Scholar
  28. Yano S, Maeda H, Nakajima M, Hagiwara T, Sawaguchi T (2007) Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles. Cellulose 15:111–120CrossRefGoogle Scholar
  29. Yin N, Chen S-y, Ouyang Y, Tang L, Yang J-x, Wang H-p (2011) Biomimetic mineralization synthesis of hydroxyapatite bacterial cellulose nanocomposites. Prog Nat Sci Mater Int 21(6):472–477CrossRefGoogle Scholar
  30. Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y, Qi L (2010) Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20(7):1152–1160CrossRefGoogle Scholar
  31. Zhou LL, Sun DP, Hu LY, Li YW, Yang JZ (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34(7):483PubMedCrossRefGoogle Scholar
  32. Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31(1):43–49CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Chemicobiology and Functional Materials, School of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations