Advertisement

Cellulose

, Volume 27, Issue 1, pp 401–413 | Cite as

Multifunctional UV-shielding nanocellulose films modified with halloysite nanotubes-zinc oxide nanohybrid

  • Dechao Hu
  • Zhilin ZhangEmail author
  • Maolin Liu
  • Jing Lin
  • Xiaojun Chen
  • Wenshi MaEmail author
Original Research
  • 77 Downloads

Abstract

The design and fabrication of multifunctional UV-shielding materials based on naturally abundant and biodegradable raw materials have far-reaching significance for various practical applications and sustainable development. In the present work, novel multifunctional cellulose nanofibrils (CNFs)/halloysite nanotubes-zinc oxide (HNTs-ZnO) hybrid films with synergic feature of excellent UV-shielding, superhydrophobic properties and thermal stability were firstly fabricated via vacuum-assisted filtration strategy and following hydrophobic modification. The successful immobilization of ZnO nano-protrusions on HNTs surface effectively suppressed the aggregation of ZnO nanoparticles, giving a positive contribution for the UV-shielding performance. Particularly, the CNFs/HNTs-ZnO hybrid films achieved a high UV-blocking efficiency in both UVA (95.7%), UVB (98.7%) and UVC (99.8%). Besides, the filtration membrane template endowed the CNFs/HNTs-ZnO hybrid films with hierarchical rough architecture, and as-fabricated hybrid films presented superhydrophobicity with a contact angle over 155° and simultaneous self-cleaning function. Moreover, the CNFs/HNTs-ZnO hybrid films also displayed an outstanding thermal and UV stability. The findings conceivably indicate that the CNFs/HNTs-ZnO hybrid films provide a versatile way for the development of sustainable multifunctional UV-shielding films and have promising applications in packaging, intelligent windows and other outdoor UV-sensitive materials areas.

Graphic abstract

Keywords

Nanocellulose UV-shielding Superhydrophobicity Thermal stability HNTs-ZnO Hybrid films 

Notes

Acknowledgments

This work was supported by the Guangdong Province Science and Technology Project (No. 2017A040402005) and Guangdong Bureau of Quality and Technical Supervision Science and Technology Project (No. 2017CT30).

Compliance with ethical standards

Conflict of interest

The authors declare no financial or non-financial conflict of interest.

Supplementary material

10570_2019_2796_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2466 kb)
10570_2019_2796_MOESM2_ESM.mp4 (1.8 mb)
Supplementary material 2 (MP4 1817 kb)
10570_2019_2796_MOESM3_ESM.mp4 (3.4 mb)
Supplementary material 3 (MP4 3532 kb)
10570_2019_2796_MOESM4_ESM.mp4 (4.2 mb)
Supplementary material 4 (MP4 4256 kb)
10570_2019_2796_MOESM5_ESM.mp4 (3 mb)
Supplementary material 5 (MP4 3024 kb)
10570_2019_2796_MOESM6_ESM.mp4 (3.8 mb)
Supplementary material 6 (MP4 3855 kb)
10570_2019_2796_MOESM7_ESM.mp4 (4.1 mb)
Supplementary material 7 (MP4 4235 kb)
10570_2019_2796_MOESM8_ESM.mp4 (3.3 mb)
Supplementary material 8 (MP4 3400 kb)

References

  1. Baidya A, Ganayee MA, Jakka RS, Kmc T, Das SK, Rha R, Pradeep T (2017) Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks. ACS Nano 11:11091–11099PubMedGoogle Scholar
  2. Barreca D, Ferrucci AP, Gasparotto A, Maccato C, Tondello E (2010) Temperature controlled synthesis and photocatalytic performance of ZnO nanoplatelets. Chem Vapor Depos 13:618–625Google Scholar
  3. Cavallaro G, Chiappisi L, Pasbakhsh P, Gradzielskia M, Lazzara G (2018) A structural comparison of halloysite nanotubes of different origin by small-angle neutron scattering (SANS) and electric birefringence. Appl Clay Sci 160:71–80Google Scholar
  4. Chen H, Yan X, Feng Q, Zhao P, Xu X, Ng DHL, Bian L (2017) Citric acid/cysteine-modified cellulose-based materials: green preparation and their applications in anticounterfeiting, chemical sensing, and UV shielding. ACS Sustain Chem Eng 5:11387–11394Google Scholar
  5. Du M, Guo B, Jia D (2006) Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). Eur Polym J 42:1362–1369Google Scholar
  6. Elilarassi R, Chandrasekaran G (2010) Effect of annealing on structural and optical properties of zinc oxide films. Mater Chem Phys 121:378–384Google Scholar
  7. Feng Y, Li X, Li M, Ye DZ, Qiang Z, You R, Xu W (2017a) Facile preparation of biocompatible silk fibroin/cellulose nanocomposite films with high mechanical performance. ACS Sustain Chem Eng 5:6227–6236Google Scholar
  8. Feng X, Zhao Y, Jiang Y, Miao M, Cao S, Fang J (2017b) Use of carbon dots to enhance UV-blocking of transparent nanocellulose films. Carbohydr Polym 161:253–260PubMedGoogle Scholar
  9. France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631Google Scholar
  10. Fu Y, Huang Y, Meng W, Wang Z, Bando Y, Golberg D, Tang C, Zhi C (2015) Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers. Nanotechnology 26:115702PubMedGoogle Scholar
  11. Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stabil 95:1502–1508Google Scholar
  12. Gao YF, Nagai M, Masuda Y, Sato F, Seo WS, Koumoto K (2006) Surface precipitation of highly porous hydrotalcite-like film on Al from a zinc aqueous solution. Langmuir 22:3521–3527PubMedGoogle Scholar
  13. Ge J, Zeng X, Tao X, Li X, Shen Z, Yun J, Chen J (2010) Preparation and characterization of PS-PMMA/ZnO nanocomposite films with novel properties of high transparency and UV-shielding capacity. J Appl Polym Sci 118:1507–1512Google Scholar
  14. Han C, Wang F, Gao C, Liu P, Ding Y, Zhang S, Yang M (2015) Transparent epoxy–ZnO/CdS nanocomposites with tunable UV and blue light-shielding capabilities. J Mater Chem C 3:5065–5072Google Scholar
  15. Ho YM, Zheng WT, Li YA, Liu JW, Qi JL (2008) Field emission properties of hybrid carbon nanotube–ZnO nanoparticles. J Phys Chem C 112:17702–17708Google Scholar
  16. Hong D, Sliozberg YR, Snyder JF, Joshua S, Chantawansri TL, Orlicki JA, Walck SD, Reiner RS, Rudie AW (2015) Highly transparent and toughened poly(methyl methacrylate) nanocomposite films containing networks of cellulose nanofibrils. ACS Appl Mater Interfaces 7:25464–25472Google Scholar
  17. Hu T, Núria B, Qi Z (2015) A transparent, hazy, and strong macroscopic ribbon of oriented cellulose nanofibrils bearing poly(ethylene glycol). Adv Mater 27:2070–2076Google Scholar
  18. Huang L, Lu C, Wang F, Dong X (2016) Piezoelectric property of PVDF/graphene composite films using 1H, 1H, 2H, 2H-Perfluorooctyltriethoxysilane as a modifying agent. J Alloys Compound 688:885–892Google Scholar
  19. Hussain ASY, Hou-Yong Y, Chuang W, Lili Y, Ying G, Linxi H, Juming Y (2018) Sheet-like cellulose nanocrystal-ZnO nanohybrids as multifunctional reinforcing agents in biopolyester composite nanofibers with ultrahigh UV-shielding and antibacterial performances. ACS Appl Biol Mater 1:714–727Google Scholar
  20. Jiang F, Hsieh YL (2016) Self-assembling of TEMPO oxidized cellulose nanofibrils as affected by protonation of surface carboxyls and drying methods. ACS Sustain Chem Eng 4:1041–1049Google Scholar
  21. Jiang Y, Song Y, Miao M, Cao S, Feng X, Fang J, Shi L (2015) Transparent nanocellulose hybrid films functionalized with ZnO nanostructures for UV-blocking. J Mater Chem C 3:6717–6724Google Scholar
  22. Kai D, Chong HM, Chow LP, Jiang L, Lin Q, Zhang K, Zhang H, Zhang Z, Loh XJ (2018) Strong and biocompatible lignin/poly(3-hydroxybutyrate) composite nanofibers. Compos Sci Technol 158:26–33Google Scholar
  23. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393Google Scholar
  24. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466Google Scholar
  25. Laguardia L, Ricci D, Vassallo E, Cremona A, Mesto E, Grezzi F, Dellera F (2010) Deposition of super-hydrophobic and oleophobic fluorocarbon films in radio frequency glow discharges. Macromol Symp 247:295–302Google Scholar
  26. Lazzara G, Cavallaro G, Panchal A, Fakhrullin R, Stavitskaya A, Vinokurov V, Lvov Y (2018) An assembly of organic–inorganic composites using halloysite clay nanotubes. Curr Opin Colloid Interface 35:42–50Google Scholar
  27. Le D, Kongparakul S, Samart C, Phanthong P, Karnjanakom S, Abudula A, Guan G (2016) Preparing hydrophobic nanocellulose-silica film by a facile one-pot method. Carbohydr Polym 153:266–274PubMedGoogle Scholar
  28. Li S, Toprak MS, Jo YS, Dobson J, Kim DK, Muhammed M (2010) Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA. Adv Mater 19:4347–4352Google Scholar
  29. Lisuzzo L, Cavallaro G, Pasbakhsh P, Milioto S, Lazzara G (2019) Why does vacuum drive to the loading of halloysite nanotubes? The key role of water confinement. J Colloid Interface Sci 547:361–369PubMedGoogle Scholar
  30. Liu M, Guo B, Du M, Cai X, Jia D (2007) Properties of halloysite nanotube–epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology 18:455703Google Scholar
  31. Liu M, Guo B, Zou Q, Du M, Jia D (2008) Interactions between halloysite nanotubes and 2,5-bis(2-benzoxazolyl) thiophene and their effects on reinforcement of polypropylene/halloysite nanocomposites. Nanotechnology 19:205709PubMedGoogle Scholar
  32. Liu H, Szunerits S, Pisarek M, Xu W, Boukherroub R (2009) Preparation of superhydrophobic coatings on zinc, silicon, and steel by a solution-immersion technique. ACS Appl Mater Inter 1:2086–2091Google Scholar
  33. Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525Google Scholar
  34. Liu Y, Yu SH, Bergström L (2017) Transparent and flexible nacre-like hybrid films of aminoclays and carboxylated cellulose nanofibrils. Adv Funct Mater 28:1703277Google Scholar
  35. Luo J, Zhang M, Yang B, Liu G, Tan J, Nie J, Song S (2019) A promising transparent and UV-shielding composite film prepared by aramid nanofibers and nanofibrillated cellulose. Carbohydr Polym 203:110–118PubMedGoogle Scholar
  36. Makaremi M, Pasbakhsh P, Cavallaro G, Lazzara G, Aw YK, Lee SM, Milioto S (2017) Effect of morphology and size of halloysite nanotubes on functional pectin bionanocomposites for food packaging applications. ACS Appl Mater Interface 9:17476–17488Google Scholar
  37. Mark B, Heidi P, Kathrin MKN, Annette P, Gers-Barlag H, Olaf G, Jean K (2004) Induction of the photoaging-associated mitochondrial common deletion in vivo in normal human skin. J Invest Dermatol 122:1277–1283Google Scholar
  38. Massaro M, Cavallaro G, Colletti C, D’Azzo G, Guernelli S, Lazzara G, Pieraccini S, Riela S (2018) Halloysite nanotubes for efficient loading, stabilization and controlled release of insulin. J Colloid Interface Sci 524:156–164PubMedGoogle Scholar
  39. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994PubMedGoogle Scholar
  40. Niu X, Liu Y, Fang G, Huang C, Rojas OJ, Pan H (2018) Highly transparent, strong and flexible films with modified cellulose nanofiber bearing UV shielding property. Biomacromolecules 19:4565–4575PubMedGoogle Scholar
  41. Nostro PL, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanopart Res 10:679–689Google Scholar
  42. Orsolini P, Antonini C, Stojanovic A, Malfait WJ, Caseri WR, Zimmermann T (2018) Superhydrophobicity of nanofibrillated cellulose materials through polysiloxane nanofilaments. Cellulose 25:1127–1146Google Scholar
  43. Peng H, Liu X, Wei T, Ma R (2017) Facile synthesis and characterization of ZnO nanoparticles grown on halloysite nanotubes for enhanced photocatalytic properties. Sci Rep 7:2250PubMedPubMedCentralGoogle Scholar
  44. Rajalakshmi R, Angappane S (2014) Effect of thickness on the structural and optical properties of sputtered ZnO and ZnO:Mn thin films. J Alloys Compd 615:355–362Google Scholar
  45. Saetun V, Chiachun C, Riyajan SA, Kaewtatip K (2017) Green composites based on thermoplastic starch and rubber wood sawdust. Polym Compos 38:1063–1069Google Scholar
  46. Sheng C, Song Y, Feng X (2018) Highly transparent and hazy cellulose nanopaper simultaneously with a self-cleaning superhydrophobic surface. ACS Sustain Chem Eng 6:5173–5181Google Scholar
  47. Soares JW, Whitten JE, Oblas DW, Steeves DM (2008) Novel photoluminescence properties of surface-modified nanocrystalline zinc oxide: toward a reactive scaffold. Langmuir 24:371–374PubMedGoogle Scholar
  48. Soni B, Hassan EB, Mahmoud B (2015) Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr Polym 134:581–589PubMedGoogle Scholar
  49. Su X, Li H, Lai X, Yang Z, Chen Z, Wu W, Zeng X (2018) Vacuum-assisted layer-by-layer superhydrophobic carbon nanotube films with electrothermal and photothermal effects for deicing and controllable manipulation. J Mater Chem A 6:16910–16919Google Scholar
  50. Susanna A, Armelao L, Callone E, Dirè S, D’Arienzo M, Credico BD, Giannini L, Hanel T, Morazzoni F, Scotti R (2015) ZnO nanoparticles anchored to silica filler. A curing accelerator for isoprene rubber composites. Chem Eng J 275:245–252Google Scholar
  51. Tam KH, Cheung CK, Leung YH, Djurišić AB, Ling CC, Beling CD, Fung S, Kwok WM, Chan WK, Phillips DL (2006) Defects in ZnO nanorods prepared by a hydrothermal method. J Phys Chem B 110:20865–20871PubMedGoogle Scholar
  52. Tarrés Q, Boufi S, Mutjé P, Delgado-Aguilar M (2017) Enzymatically hydrolyzed and TEMPO-oxidized cellulose nanofibers for the production of nanopapers: morphological, optical, thermal and mechanical properties. Cellulose 24:3943–3954Google Scholar
  53. Tu Y, Zhou L, Jin YZ, Gao C, Ye ZZ, Yang YF, Wang QL (2010) Transparent and flexible thin films of ZnO-polystyrene nanocomposite for UV-shielding applications. J Mater Chem 20:1594–1599Google Scholar
  54. Ul-Islam M, Khattak WA, Ullah MW, Khan S, Park JK (2014) Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose 21:433–447Google Scholar
  55. Wang Y, Su J, Li T, Ma P, Bai H, Xie Y, Chen M, Dong W (2017) A novel UV-shielding and transparent polymer film: when bio-inspired dopamine-melanin hollow nanoparticles join polymer. ACS Appl Mater Interface 9:36281–36289Google Scholar
  56. Yan Q, Sabo R, Wu Y, Zhu JY, Cai Z (2015) Self-assembled optically transparent cellulose nanofibril films: effect of nanofibril morphology and drying procedure. Cellulose 22:1091–1102Google Scholar
  57. Yuan P, Southon PD, Liu Z, Green MER, Hook JM, Antill SJ, Kepert CJ, Antill J (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112:15742–15751Google Scholar
  58. Zeng G, He Y, Yu Z, Zhan Y, Ma L, Zhang L (2016) Preparation and characterization of a novel PVDF ultrafiltration membrane by blending with TiO2-HNTs nanocomposites. Appl Surf Sci 371:624–632Google Scholar
  59. Zhang Y, Zhuang S, Xu X, Hu J (2013) Transparent and UV-shielding ZnO@PMMA nanocomposite films. Opt Mater 36:169–172Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.School of Mechanical and Electrical EngineeringGuangdong Engineering PolytechnicGuangzhouPeople’s Republic of China

Personalised recommendations