Advertisement

Cellulose

, Volume 26, Issue 18, pp 9631–9643 | Cite as

Surface hydrophobization of TEMPO-oxidized cellulose nanofibrils (CNFs) using a facile, aqueous modification process and its effect on properties of epoxy nanocomposites

  • Shikha Shrestha
  • Reaz A. Chowdhury
  • Michael D. Toomey
  • Daniela Betancourt
  • Francisco Montes
  • Jeffrey P. YoungbloodEmail author
Original Research
  • 142 Downloads

Abstract

This work investigates the effects of surface modified cellulose nanofibrils (CNFs) on the mechanical, thermal, and morphological properties of epoxy nanocomposites. CNFs (extracted from wood pulp) were modified by using a two-step water-based method, where tannic acid (TA) acts as a primer with CNF suspension and reacts with hexadecylamine (HDA), forming the modified product as CNF-TA-HDA. The modified (-m) and unmodified (-um) CNFs were filled into hydrophobic epoxy resin with a co-solvent (acetone), which was subsequently removed to form a solvent-free two component epoxy system, followed by addition of hardener to cure the resin. Better dispersion and stronger adhesion between fillers and epoxy were obtained for m-CNFs than the um-CNFs, resulting in better mechanical properties of nanocomposites at the same loading. Elastic modulus, tensile strength, and work-of-fracture improved with increasing m-CNFs, with the most remarkable improvement observed for 0.5 wt% content, indicating good reinforcement of epoxy. um-CNFs showed incompatibility and lack of dispersion with epoxy leading to insignificant changes in the mechanical properties. Thermal stability and the degradation temperature of m-CNF/epoxy improved when compared to neat epoxy. The glass transition temperature (\( T_{g} \)) also increased substantially up to 5 °C for m-CNFs, while um-CNFs showed decrease in \( T_{g} \).

Keywords

Cellulose nanofibrils Surface modification Epoxy nanocomposites Mechanical properties Thermal properties 

Notes

Acknowledgments

The authors would like to acknowledge financial support from the Private–Public Partnership for Nanotechnology in the Forestry Sector (P3Nano) under Grant Nos. 107563 and 107528.

Supplementary material

10570_2019_2762_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2092 kb)

References

  1. Abdul Khalil HPS, Jawaid M, Firoozian P et al (2013) Dynamic mechanical properties of activated carbon-filled epoxy nanocomposites. Int J Polym Anal Charact 18:247–256.  https://doi.org/10.1080/1023666X.2013.766553 CrossRefGoogle Scholar
  2. Alamri H, Low IM, Alothman Z (2012) Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites. Compos Part B Eng 43:2762–2771.  https://doi.org/10.1016/j.compositesb.2012.04.037 CrossRefGoogle Scholar
  3. Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon N Y 47:1738–1746.  https://doi.org/10.1016/j.carbon.2009.02.030 CrossRefGoogle Scholar
  4. Ansari F, Galland S, Johansson M et al (2014) Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Compos Part A Appl Sci Manuf 63:35–44.  https://doi.org/10.1016/j.compositesa.2014.03.017 CrossRefGoogle Scholar
  5. Asadi A, Miller M, Sultana S et al (2016) Introducing cellulose nanocrystals in sheet molding compounds (SMC). Compos Part A Appl Sci Manuf 88:206–215.  https://doi.org/10.1016/j.compositesa.2016.05.033 CrossRefGoogle Scholar
  6. Barari B, Omrani E, Dorri Moghadam A et al (2016) Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: an attempt to fabricate and scale the ‘Green’ composite. Carbohydr Polym 147:282–293.  https://doi.org/10.1016/j.carbpol.2016.03.097 CrossRefPubMedGoogle Scholar
  7. Bello SA, Agunsoye JO, Hassan SB et al (2015) Tribology in industry epoxy resin based composites, mechanical and tribological properties: a review. Tribol Ind 37:500–524Google Scholar
  8. Benmokrane B, Elgabbas F, Ahmed EA, Cousin P (2015) Characterization and comparative durability study of glass/vinylester, basalt/vinylester, and basalt/epoxy FRP bars. J Compos Constr 19:04015008.  https://doi.org/10.1061/(ASCE)CC.1943-5614.0000564 CrossRefGoogle Scholar
  9. Clemons C (2016) Nanocellulose in spun continuous fibers: a review and future outlook. J Renew Mater 4:327–339.  https://doi.org/10.7569/JRM.2016.634112 CrossRefGoogle Scholar
  10. Diaz JA, Wu X, Martini A et al (2013) Thermal expansion of self-organized and shear-oriented cellulose nanocrystal films. Biomacromol 14:2900–2908.  https://doi.org/10.1021/bm400794e CrossRefGoogle Scholar
  11. Fu T, Montes F, Suraneni P et al (2017) The influence of cellulose nanocrystals on the hydration and flexural strength of Portland cement pastes. Polymers (Basel).  https://doi.org/10.3390/polym9090424 CrossRefPubMedCentralGoogle Scholar
  12. Fujisawa S, Ikeuchi T, Takeuchi M et al (2012) Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromolecules 13:2188–2194CrossRefGoogle Scholar
  13. Fujisawa S, Saito T, Kimura S et al (2014) Comparison of mechanical reinforcement effects of surface-modified cellulose nanofibrils and carbon nanotubes in PLLA composites. Compos Sci Technol 90:96–101.  https://doi.org/10.1016/j.compscitech.2013.10.021 CrossRefGoogle Scholar
  14. Girouard NM, Xu S, Schueneman GT et al (2016) Site-selective modification of cellulose nanocrystals with isophorone diisocyanate and formation of polyurethane-CNC composites. ACS Appl Mater Interfaces 8:1458–1467.  https://doi.org/10.1021/acsami.5b10723 CrossRefPubMedGoogle Scholar
  15. Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646.  https://doi.org/10.1021/la0504311 CrossRefPubMedGoogle Scholar
  16. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542.  https://doi.org/10.1039/c3cs60204d CrossRefPubMedGoogle Scholar
  17. Hu Z, Berry RM, Pelton R, Cranston ED (2017) One-pot water-based hydrophobic surface modification of cellulose nanocrystals using plant polyphenols. ACS Sustain Chem Eng 5:5018–5026.  https://doi.org/10.1021/acssuschemeng.7b00415 CrossRefGoogle Scholar
  18. Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466.  https://doi.org/10.1007/s00339-007-4175-6 CrossRefGoogle Scholar
  19. Kalia S, Dufresne A, Cherian BM et al (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci.  https://doi.org/10.1155/2011/837875 CrossRefGoogle Scholar
  20. Lee K-Y, Tammelin T, Schulfter K et al (2012) High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. ACS Appl Mater Interfaces 4:4078–4086.  https://doi.org/10.1021/am300852a CrossRefPubMedGoogle Scholar
  21. Lee K-Y, Aitomäki Y, Berglund LA et al (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27.  https://doi.org/10.1016/j.compscitech.2014.08.032 CrossRefGoogle Scholar
  22. Liu J-C, Moon RJ, Rudie A, Youngblood JP (2014) Mechanical performance of cellulose nanofibril film-wood flake laminate. Holzforschung.  https://doi.org/10.1515/hf-2013-0071 CrossRefGoogle Scholar
  23. Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer (Guildf) 49:1285–1296.  https://doi.org/10.1016/j.polymer.2008.01.028 CrossRefGoogle Scholar
  24. Lu T, Jiang M, Jiang Z et al (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos Part B Eng 51:28–34.  https://doi.org/10.1016/j.compositesb.2013.02.031 CrossRefGoogle Scholar
  25. Lu Y, Cueva MC, Lara-Curzio E, Ozcan S (2015) Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization. Carbohydr Polym 131:208–217.  https://doi.org/10.1016/j.carbpol.2015.05.047 CrossRefPubMedGoogle Scholar
  26. Maren R, William TW (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677.  https://doi.org/10.1021/bm034519+ CrossRefGoogle Scholar
  27. Masuelli MA (2013) Introduction of fibre-reinforced polymers–polymers and composites: concepts, properties and processes. Technol Appl Concr Repair.  https://doi.org/10.5772/54629 CrossRefGoogle Scholar
  28. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941.  https://doi.org/10.1039/c0cs00108b CrossRefPubMedGoogle Scholar
  29. Orellana JL, Wichhart D, Kitchens CL (2018) Mechanical and optical properties of polylactic acid films containing surfactant-modified cellulose nanocrystals. J Nanomater 2018:1–12.  https://doi.org/10.1155/2018/7124260 CrossRefGoogle Scholar
  30. Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206.  https://doi.org/10.1002/cjce.20554 CrossRefGoogle Scholar
  31. Peng SX, Moon RJ, Youngblood JP (2014) Design and characterization of cellulose nanocrystal-enhanced epoxy hardeners. Green Mater 2:193–205.  https://doi.org/10.1680/gmat.14.00015 CrossRefGoogle Scholar
  32. Peng SX, Shrestha S, Yoo Y, Youngblood JP (2017a) Enhanced dispersion and properties of a two-component epoxy nanocomposite using surface modified cellulose nanocrystals. Polym (United Kingdom) 112:359–368.  https://doi.org/10.1016/j.polymer.2017.02.016 CrossRefGoogle Scholar
  33. Peng SX, Shrestha S, Youngblood JP (2017b) Crystal structure transformation and induction of shear banding in polyamide 11 by surface modified cellulose nanocrystals. Polymer (Guildf) 114:88–102.  https://doi.org/10.1016/j.polymer.2017.02.081 CrossRefGoogle Scholar
  34. Qing Y, Cai Z, Wu Y et al (2015) Facile preparation of optically transparent and hydrophobic cellulose nanofibril composite films. Ind Crops Prod 77:13–20.  https://doi.org/10.1016/j.indcrop.2015.08.016 CrossRefGoogle Scholar
  35. Rodriguez NM (1993) A review of catalytically grown carbon nanofibers. J Mater Res 8:3233–3250.  https://doi.org/10.1557/JMR.1993.3233 CrossRefGoogle Scholar
  36. Rol F, Belgacem MN, Gandini A, Bras J (2018) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci.  https://doi.org/10.1016/j.progpolymsci.2018.09.002 CrossRefGoogle Scholar
  37. Saba N, Mohammad F, Pervaiz M et al (2017a) Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 97:190–200.  https://doi.org/10.1016/j.ijbiomac.2017.01.029 CrossRefPubMedGoogle Scholar
  38. Saba N, Safwan A, Sanyang ML et al (2017b) Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 102:822–828.  https://doi.org/10.1016/j.ijbiomac.2017.04.074 CrossRefPubMedGoogle Scholar
  39. Shrestha S, Diaz JA, Ghanbari S, Youngblood JP (2017) Hygroscopic swelling determination of cellulose nanocrystal (CNC) films by polarized light microscopy digital image correlation. Biomacromol 18:1482–1490.  https://doi.org/10.1021/acs.biomac.7b00026 CrossRefGoogle Scholar
  40. Shrestha S, Montes F, Schueneman GT et al (2018) Effects of aspect ratio and crystal orientation of cellulose nanocrystals on properties of poly(vinyl alcohol) composite fibers. Compos Sci Technol 167:482–488.  https://doi.org/10.1016/j.compscitech.2018.08.032 CrossRefGoogle Scholar
  41. Xu S, Girouard N, Schueneman G et al (2013a) Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polym (United Kingdom) 54:6589–6598.  https://doi.org/10.1016/j.polymer.2013.10.011 CrossRefGoogle Scholar
  42. Xu X, Liu F, Jiang L et al (2013b) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009.  https://doi.org/10.1021/am302624t CrossRefPubMedGoogle Scholar
  43. Yano H, Sugiyama J, Nakagaito AN et al (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155.  https://doi.org/10.1002/adma.200400597 CrossRefGoogle Scholar
  44. Zhang Y, Song P, Liu H et al (2016) Morphology, healing and mechanical performance of nanofibrillated cellulose reinforced poly(ε-caprolactone)/epoxy composites. Compos Sci Technol 125:62–70.  https://doi.org/10.1016/j.compscitech.2016.01.008 CrossRefGoogle Scholar
  45. Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761.  https://doi.org/10.1002/adem.200400097 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Materials EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Escuela de Ingeniería y CienciasTecnológico de MonterreyZapopanMexico

Personalised recommendations