Advertisement

Cellulose

pp 1–13 | Cite as

Efficient conversion of cellulose to methyl levulinate over heteropoly acid promoted by Sn-Beta zeolite

  • Shengqiang Zhou
  • Xiaomei Yang
  • Yali Zhang
  • Lingyun Jiang
  • Lipeng ZhouEmail author
  • Tianliang Lu
  • Yunlai Su
Original Research
  • 29 Downloads

Abstract

One-pot conversion of cellulose to valued-added platform chemicals such as alkyl levulinate is a promising and challenging process of biomass utilization due to the insolubility of cellulose in alcohol. In this work, commercial heteropoly acid combined with postsynthesized Sn-Beta zeolite was employed to transform cellulose to methyl levulinate (MLE) in one pot. The synergistic catalysis of the homogeneous strong Brønsted (B) acid and the solid strong Lewis (L) acid can effectively realize the depolymerization of solid cellulose and the subsequent isomerization, dehydration and hydration steps to MLE. 55% and 62% of MLE yields were obtained from α-cellulose and microcrystalline cellulose, respectively, at 160 °C for 10 h. Various carbohydrates besides cellulose can also be efficiently converted to MLE in high yields over the bifunctional catalyst system. The effects of the amount of B acid and L acid, the reaction temperature and time and the amount of cellulose on the production of MLE were investigated in detail. Finally, the reaction pathway of cellulose to MLE was revealed. Recyclability tests indicated that the binary catalyst can be reused without decrease of catalytic activity.

Graphic abstract

Keywords

Methyl levulinate Cellulose Sn-Beta Heteropoly acid 

Notes

Acknowledgments

We acknowledge the financial support from the National Natural Science Foundation of China (Grant: 21503192), the State Key Laboratory of Catalysis in DICP (N-16-02). The program of Young Key Teacher of Zhengzhou University is also acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10570_2019_2743_MOESM1_ESM.docx (550 kb)
Supplementary material 1 (DOCX 549 kb)

References

  1. Chen SS, Maneerung T, Tsang DCW, Ok YS, Wang CH (2017) Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chem Eng J 328:246–273.  https://doi.org/10.1016/j.cej.2017.07.020 CrossRefGoogle Scholar
  2. Dai J, Peng LC, Li H (2018) Intensified ethyl levulinate production from cellulose using a combination of low loading H2SO4 and Al(OTf)3. Catal Commun 103:116–119.  https://doi.org/10.1016/j.catcom.2017.10.007 CrossRefGoogle Scholar
  3. Démolis A, Essayem N, Rataboul F (2014) Synthesis and applications of alkyl levulinates. ACS Sustain Chem Eng 2:1338–1352.  https://doi.org/10.1021/sc500082n CrossRefGoogle Scholar
  4. Deng WP, Liu M, Zhang QH, Tan XS, Wang Y (2010) Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures. Chem Commun 46:2668–2670.  https://doi.org/10.1039/b925723c CrossRefGoogle Scholar
  5. Deng WP, Liu M, Zhang QH, Wang Y (2011) Direct transformation of cellulose into methyl and ethyl glucosides in methanol and ethanol media catalyzed by heteropolyacids. Catal Today 164:461–466.  https://doi.org/10.1016/j.cattod.2010.10.055 CrossRefGoogle Scholar
  6. Deng WP, Zhang QH, Wang Y (2012) Polyoxometalates as efficient catalysts for transformations of cellulose into platform chemicals. Dalton Trans 41:9817–9831.  https://doi.org/10.1039/C2DT30637A CrossRefGoogle Scholar
  7. Deng L, Chang C, An R, Qi XG, Xu GZ (2017) Metal sulfates-catalyzed butanolysis of cellulose: butyl levulinate production and optimization. Cellulose 24:5403–5415.  https://doi.org/10.1007/s10570-017-1530-4 CrossRefGoogle Scholar
  8. Ding DQ, Xi JX, Wang JJ, Liu XH, Lu GZ, Wang YQ (2015) Production of methyl levulinate from cellulose: selectivity and mechanism study. Green Chem 17:4037–4044.  https://doi.org/10.1039/c5gc00440c CrossRefGoogle Scholar
  9. Garves K (1988) Acid catalyzed degradation of cellulose in alcohols. J Wood Chem Technol 8:121–134.  https://doi.org/10.1080/02773818808070674 CrossRefGoogle Scholar
  10. Geboers J, de Vyver SV, Carpentier K, de Blochouse K, Jacobs P, Sels B (2010) Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon. Chem Commun 46:3577–3579.  https://doi.org/10.1039/c001096k CrossRefGoogle Scholar
  11. Guo Q, Ren LM, Kumar P, Cybulskis VJ, Mkhoyan KA, Davis ME, Tsapatsis M (2018) A chromium hydroxide/MIL-101(Cr) MOF composite catalyst and its use for the selective isomerization of glucose to fructose. Angew Chem Int Ed 57:4926–4930.  https://doi.org/10.1002/anie.201712818 CrossRefGoogle Scholar
  12. Hishikawa Y, Yamaguchi M, Kubo S, Yamada T (2013) Direct preparation of butyl levulinate by a single solvolysis process of cellulose. J Wood Sci 59:179–182.  https://doi.org/10.1007/s10086-013-1324-8 CrossRefGoogle Scholar
  13. Hu L, Lin L, Wu Z, Zhou SY, Liu SJ (2015) Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Appl Catal B Environ 174–175:225–243.  https://doi.org/10.1016/j.apcatb.2015.03.003 CrossRefGoogle Scholar
  14. Jiang LY, Zhou LP, Chao JY, Zhao HT, Lu TL, Su YL, Yang XM, Xu J (2018) Direct catalytic conversion of carbohydrates to methyl levulinate: synergy of solid Brønsted acid and Lewis acid. Appl Catal B Environ 220:589–596.  https://doi.org/10.1016/j.apcatb.2017.08.072 CrossRefGoogle Scholar
  15. Jin F, Enomoto H (2011) Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions. Energy Environ Sci 4:382–397.  https://doi.org/10.1039/c004268d CrossRefGoogle Scholar
  16. Jing SS, Cao XF, Zhong LX, Peng XW, Zhang XT, Wang S, Sun RC (2016) In situ carbonic acid from CO2. ACS Sustain Chem Eng 4:4146–4155.  https://doi.org/10.1021/acssuschemeng.6b00623 CrossRefGoogle Scholar
  17. Josephson TR, DeJaco RF, Pahari S, Ren LM, Guo Q, Tsapatsis M, Siepmann JI, Vlachos DG, Caratzoulas S (2018) Cooperative catalysis by surface Lewis acid/silanol for selective fructose etherification on Sn-SPP zeolite. ACS Catal 8:9056–9065.  https://doi.org/10.1021/acscatal.8b01615 CrossRefGoogle Scholar
  18. Kang SM, Yu J (2015) Effect of methanol on formation of levulinates from cellulosic biomass. Ind Eng Chem Res 54:11552–11559.  https://doi.org/10.1021/acs.iecr.5b03512 CrossRefGoogle Scholar
  19. Li XT, Jiang YJ, Wang LL, Meng LQ, Wang W, Mu XD (2012) Effective low-temperature hydrolysis of cellulose catalyzed by concentrated H3PW12O40 under microwave irradiation. RSC Adv 2:6921–6925.  https://doi.org/10.1039/c2ra21022c CrossRefGoogle Scholar
  20. Li YP, Head-Gordon M, Bell AT (2014) Analysis of the reaction mechanism and catalytic activity of metal-substituted Beta zeolite for the isomerization of glucose to fructose. ACS Catal 4:1537–1545.  https://doi.org/10.1021/cs401054f CrossRefGoogle Scholar
  21. Li H, Fang Z, Luo J, Yang S (2017) Direct conversion of biomass components to the biofuel methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites. Appl Catal B Environ 200:182–191.  https://doi.org/10.1016/j.apcatb.2016.07.007 CrossRefGoogle Scholar
  22. Liu RL, Chen JZ, Huang X, Chen LM, Ma LL, Li XJ (2013a) Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. Green Chem 15:2895–2903.  https://doi.org/10.1039/c3gc41139g CrossRefGoogle Scholar
  23. Liu Y, Liu CL, Wu HZ, Dong WS (2013b) An efficient catalyst for the conversion of fructose into methyl levulinate. Catal Lett 143:1346–1353.  https://doi.org/10.1007/s10562-013-1094-3 CrossRefGoogle Scholar
  24. Liu J, Yang BB, Wang XQ, Liu C, Yang RZ, Dong WS (2017) Glucose conversion to methyl levulinate catalyzed by metal ion-exchanged montmorillonites. Appl Clay Sci 141:118–124.  https://doi.org/10.1016/j.clay.2017.02.017 CrossRefGoogle Scholar
  25. Liu J, Wang XQ, Yang BB, Liu CL, Xu CL, Dong WS (2018) Highly efficient conversion of glucose into methyl levulinate catalyzed by tin-exchanged montmorillonite. Renew Energy 120:231–240.  https://doi.org/10.1016/j.renene.2017.12.104 CrossRefGoogle Scholar
  26. Moliner M, Román-Leshkov Y, Davis ME (2010) Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc Natl Acad Sci USA 107:6164–6168.  https://doi.org/10.1073/pnas.1002358107 CrossRefGoogle Scholar
  27. Morales G, Osatiashtiani A, Hernández B, Iglesias J, Melero JA, Paniagua M, Brown DR, Granollers M, Lee AF, Wilson K (2014) Conformal sulfated zirconia monolayer catalysts for the one-pot synthesis of ethyl levulinate from glucose. Chem Commun 50:11742–11745.  https://doi.org/10.1039/c4cc04594g CrossRefGoogle Scholar
  28. Ogasawara Y, Itagaki S, Yamaguchi K, Mizuno N (2011) Saccharification of natural lignocellulose biomass and polysaccharides by highly negatively charged heteropolyacids in concentrated aqueous solution. Chemsuschem 4:519–525.  https://doi.org/10.1002/cssc.201100025 CrossRefGoogle Scholar
  29. Okuhara T (2002) Water-tolerant solid acid catalysts. Chem Rev 102:3641–3666.  https://doi.org/10.1021/cr0103569 CrossRefGoogle Scholar
  30. Peng LC, Lin L, Li H, Yang QL (2011) Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts. Appl Energy 88:4590–4596.  https://doi.org/10.1016/j.apenergy.2011.05.049 CrossRefGoogle Scholar
  31. Rataboul F, Essayem N (2011) Cellulose reactivity in supercritical methanol in the presence of solid acid catalysts: direct synthesis of methyl-levulinate. Ind Eng Chem Res 50:799–805.  https://doi.org/10.1021/ie101616e CrossRefGoogle Scholar
  32. Saravanamurugan S, Riisager A (2013) Zeolite catalyzed transformation of carbohydrates to alkyl levulinates. ChemCatChem 5:1754–1757.  https://doi.org/10.1002/cctc.201300006 CrossRefGoogle Scholar
  33. Song CH, Liu SJ, Peng XW, Long JX, Lou WY, Li XH (2016) Catalytic conversion of carbohydrates to levulinate ester over heteropolyanion-based ionic liquids. Chemsuschem 9:1–11.  https://doi.org/10.1002/cssc.201601080 CrossRefGoogle Scholar
  34. Sun Z, Xue LF, Wang ST, Wang XH, Shi JY (2016) Single step conversion of cellulose to levulinic acid using temperature-responsive dodeca-aluminotungstic acid catalysts. Green Chem 18:742–752.  https://doi.org/10.1039/c5gc01730k CrossRefGoogle Scholar
  35. Tian J, Wang JH, Zhao S, Jiang CY, Zhang X, Wang XH (2010) Hydrolysis of cellulose by the heteropoly acid H3PW12O40. Cellulose 17:587–594.  https://doi.org/10.1007/s10570-009-9391-0 CrossRefGoogle Scholar
  36. Tominaga K, Mori A, Fukushima Y, Shimada S, Sato K (2011) Mixed-acid systems for the catalytic synthesis of methyl levulinate from cellulose. Green Chem 13:810–812.  https://doi.org/10.1039/c0gc00715c CrossRefGoogle Scholar
  37. Tominaga K, Nemoto K, Kamimura Y, Yamada A, Yamamoto Y, Sato K (2016) A practical and efficient synthesis of methyl levulinate from cellulosic biomass catalyzed by an aluminum-based mixed acid catalyst system. RSC Adv 6:65119–65124.  https://doi.org/10.1039/c6ra15638j CrossRefGoogle Scholar
  38. Wang SS, Yang GY (2015) Recent advances in polyoxometalate-catalyzed reactions. Chem Rev 115:4893–4962.  https://doi.org/10.1021/cr500390v CrossRefGoogle Scholar
  39. Xu GZ, Chang C, Fang SQ, Ma XJ (2015a) Cellulose reactivity in ethanol at elevate temperature and the kinetics of one-pot preparation of ethyl levulinate from cellulose. Renew Energy 78:583–589.  https://doi.org/10.1016/j.renene.2015.01.054 CrossRefGoogle Scholar
  40. Xu XL, Zhang XL, Zou WJ, Yue HJ, Tian G, Feng SH (2015b) Conversion of carbohydrates to methyl levulinate catalyzed by sulfated montmorillonite. Catal Commun 62:67–70.  https://doi.org/10.1016/j.catcom.2015.01.011 CrossRefGoogle Scholar
  41. Yang XM, Bian JJ, Huang JH, Xin WW, Lu TL, Chen C, Su YL, Zhou LP, Wang F, Xu J (2017) Fluoride-free and low concentration template synthesis of hierarchical Sn-Beta zeolites. Green Chem 19:692–701.  https://doi.org/10.1039/c6gc02437h CrossRefGoogle Scholar
  42. Yang XM, Liu Y, Li XX, Ren JX, Zhou LP, Lu TL, Su YL (2018) Synthesis of Sn-containing nano-sized Beta zeolite as efficient catalyst for transformation of glucose to methyl lactate. ACS Sustain Chem Eng 6:8256–8265.  https://doi.org/10.1021/acssuschemeng.8b00177 CrossRefGoogle Scholar
  43. Yang XM, Yang JR, Gao BB, Lu TL, Zhou LP (2019) Conversion of glucose to methyl levulinate over Sn–Al–β zeolite: role of Sn and mesoporosity. Catal Commun 130:105783.  https://doi.org/10.1016/j.catcom.2019.105783 CrossRefGoogle Scholar
  44. Yu F, Zhong RY, Chong H, Smet M, Dehaen W, Sels BF (2017) Fast catalytic conversion of recalcitrant cellulose into alkyl levulinates and levulinic acid in presence of soluble and recoverable sulfonated hyperbranched poly(arylene oxindole)s. Green Chem 19:153–163.  https://doi.org/10.1039/C6GC02130A CrossRefGoogle Scholar
  45. Zhang JZ, Liu X, Sun M, Ma XH, Han Y (2012) Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium. ACS Catal 2:1698–1702.  https://doi.org/10.1021/cs300342k CrossRefGoogle Scholar
  46. Zhang XY, Zhang D, Sun Z, Xue LF, Wang XH, Jiang ZJ (2016) Highly efficient preparation of HMF from cellulose using temperature-responsive heteropolyacid catalysts in cascade reaction. Appl Catal B Environ 196:50–56.  https://doi.org/10.1016/j.apcatb.2016.05.019 CrossRefGoogle Scholar
  47. Zhang XY, Li Y, Xue LF, Wang ST, Wang XH, Jiang ZJ (2018) Catalyzing cascade production of methyl levulinate from polysaccharides using heteropolyacids HnPW11MO39 with Brønsted/Lewis acidic sites. ACS Sustain Chem Eng 6:165–176.  https://doi.org/10.1021/acssuschemeng.7b02042 CrossRefGoogle Scholar
  48. Zhou LP, Zou HJ, Nan JX, Wu L, Yang XM, Su YL, Lu TL, Xu J (2014) Conversion of carbohydrate biomass to methyl levulinate with Al2(SO4)3 as a simple, cheap and efficient catalyst. Catal Commun 50:13–16.  https://doi.org/10.1016/j.catcom.2014.02.021 CrossRefGoogle Scholar
  49. Zhou LP, Yang XM, Xu JL, Shi MT, Wang F, Chen C, Xu J (2015a) Depolymerization of cellulose to glucose by oxidation–hydrolysis. Green Chem 17:1519–1524.  https://doi.org/10.1039/c4gc02151g CrossRefGoogle Scholar
  50. Zhou LP, Zhao HT, Cui LL, Bai YQ, Bian JJ, Lu TL, Su YL, Yang XM (2015b) Promotion effect of mesopore on the conversion of carbohydrates to methyl levulinate over H-USY zeolite. Catal Commun 71:74–78.  https://doi.org/10.1016/j.catcom.2015.08.017 CrossRefGoogle Scholar
  51. Zhu SH, Guo J, Wang X, Wang JG, Fan WB (2017) Alcoholysis: a promising technology for conversion of lignocellulose and platform chemicals. Chemsuschem 10:2547–2559.  https://doi.org/10.1002/cssc.201700597 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Shengqiang Zhou
    • 1
  • Xiaomei Yang
    • 1
  • Yali Zhang
    • 1
  • Lingyun Jiang
    • 1
  • Lipeng Zhou
    • 1
    Email author
  • Tianliang Lu
    • 2
  • Yunlai Su
    • 1
  1. 1.College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouChina
  2. 2.School of Chemical Engineering and EnergyZhengzhou UniversityZhengzhouChina

Personalised recommendations