Advertisement

Cellulose

pp 1–14 | Cite as

Enhanced mechanical and oxygen barrier performance in biodegradable polyurethanes by incorporating cellulose nanocrystals with interfacial polylactide stereocomplexation

  • Huagao FangEmail author
  • Xu Chen
  • Shenglin Wang
  • Sheng Cheng
  • Yunsheng DingEmail author
Original Research
  • 7 Downloads

Abstract

Using bio-derived cellulose nanocrystals (CNCs) to reinforce the mechanical properties of biodegradable polyurethanes (PUs) is a promising approach especially when attempting to fabricate fully sustainable materials with high performance. However, the way to efficiently improve the dispersion and interfacial strength of CNCs in PU matrices is still an open question. In the current work, poly-l-lactide (PlLA) grafted CNCs (CNC-g-l) and a PU elastomer with poly-d-lactide as partial soft segments (d-PU) were first prepared separately, and then the fully biodegradable PU nanocomposites were fabricated by solution blending of CNC-g-l and d-PU. The surface grafting of PlLA can improve the thermal stability of CNCs, but has marginal effect on that of the nanocomposites. The improved dispersion of CNCs and enhanced interfacial strength, as evidenced by scanning electron microscopy, wide-angle X-ray diffraction and rheology measurements, are achieved by the construction of interfacial polylactide stereocomplexation (sc-PLA). The optimal improvement in mechanical properties of the nanocomposites is realized when only 1 wt% CNC-g-l is incorporated in the d-PU matrix. With the assistance of interfacial sc-PLA, the nanocomposite can gain 40% reduction in oxygen transmission rate at the optimal CNC-g-l content of 5 wt%. This study may provide a new method to improve the dispersion and interfacial strength of CNCs in biodegradable PUs and achieve simultaneously mechanical and barrier performance enhancement.

Graphic abstract

Keywords

Biodegradable Polyurethane elastomer Cellulose nanocrystal Interfacial strength Stereocomplexation 

Notes

Acknowledgments

This work was financially supported by the National Science Foundation of China with Grant Nos. 51503055, 51673056 and the Provincial Science Foundation of Anhui with Grant No. 1608085ME88 and the National Key Research and Development Program of China with Grant No. 2017YFB0903803.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10570_2019_2742_MOESM1_ESM.docx (440 kb)
Supplementary material 1 (DOCX 439 kb)

References

  1. Acik G, Kamaci M, Altinkok C, Karabulut HRF, Tasdelen MA (2018) Synthesis and properties of soybean oil-based biodegradable polyurethane films. Prog Org Coat 123:261–266CrossRefGoogle Scholar
  2. Ben Azouz K, Ramires EC, Van den Fonteyne W, El Kissi N, Dufresne A (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1:236–240CrossRefGoogle Scholar
  3. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169CrossRefGoogle Scholar
  4. Chowdhury RA, Nuruddin M, Clarkson C, Montes F, Howarter J, Youngblood JP (2019) Cellulose nanocrystal (CNC) coatings with controlled anisotropy as high-performance gas barrier films. ACS Appl Mater Interfaces 11:1376–1383CrossRefGoogle Scholar
  5. Deng S, Bai H, Liu Z, Zhang Q, Fu Q (2019) Toward supertough and heat-resistant stereocomplex-type polylactide/elastomer blends with impressive melt stability via in situ formation of graft copolymer during one-pot reactive melt blending. Macromolecules 52:1718–1730CrossRefGoogle Scholar
  6. Dhar P, Bhardwaj U, Kumar A, Katiyar V (2015) Poly (3-hydroxybutyrate)/cellulose nanocrystal films for food packaging applications: barrier and migration studies. Polym Eng Sci 55:2388–2395CrossRefGoogle Scholar
  7. Ferreira FV, Dufresne A, Pinheiro IF, Souza DHS, Gouveia RF, Mei LHI, Lona LMF (2018a) How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: a comprehensive review. Eur Polym J 108:274–285CrossRefGoogle Scholar
  8. Ferreira FV, Mariano M, Rabelo SC, Gouveia RF, Lona LMF (2018b) Isolation and surface modification of cellulose nanocrystals from sugarcane bagasse waste: from a micro- to a nano-scale view. Appl Surf Sci 436:1113–1122CrossRefGoogle Scholar
  9. Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948–956CrossRefGoogle Scholar
  10. Gan L, Wang Y, Zhang M, Xia XH, Huang J (2019) Hierarchically spacing DNA probes on bio-based nanocrystal for spatial detection requirements. Sci Bull 64:934–940CrossRefGoogle Scholar
  11. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  12. Habibi Y, Aouadi S, Raquez J-M, Dubois P (2013) Effects of interfacial stereocomplexation in cellulose nanocrystal-filled polylactide nanocomposites. Cellulose 20:2877–2885CrossRefGoogle Scholar
  13. Joshi M, Adak B, Butola BS (2018) Polyurethane nanocomposite based gas barrier films, membranes and coatings: a review on synthesis, characterization and potential applications. Prog Mater Sci 97:230–282CrossRefGoogle Scholar
  14. Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368–393CrossRefGoogle Scholar
  15. Karkhanis SS, Stark NM, Sabo RC, Matuana LM (2018) Water vapor and oxygen barrier properties of extrusion-blown poly(lactic acid)/cellulose nanocrystals nanocomposite films. Compos Part A Appl Sci Manuf 114:204–211CrossRefGoogle Scholar
  16. Kong X, Zhao L, Curtis JM (2016) Polyurethane nanocomposites incorporating biobased polyols and reinforced with a low fraction of cellulose nanocrystals. Carbohydr Polym 152:487–495CrossRefGoogle Scholar
  17. Lee WJ, Clancy AJ, Kontturi E, Bismarck A, Shaffer MSP (2016) Strong and stiff: high-performance cellulose nanocrystal/poly(vinyl alcohol) composite fibers. ACS Appl Mater Interfaces 8:31500–31504CrossRefGoogle Scholar
  18. Li Y, Chen H, Liu D, Wang W, Liu Y, Zhou S (2015) pH-responsive shape memory poly(ethylene glycol)–poly(ε-caprolactone)-based polyurethane/cellulose nanocrystals nanocomposite. ACS Appl Mater Interfaces 7:12988–12999CrossRefGoogle Scholar
  19. Li Z, Tan BH, Lin T, He C (2016) Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog Polym Sci 62:22–72CrossRefGoogle Scholar
  20. Lin S, Huang J, Chang PR, Wei S, Xu Y, Zhang Q (2013) Structure and mechanical properties of new biomass-based nanocomposite: castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal. Carbohydr Polym 95:91–99CrossRefGoogle Scholar
  21. Ma Z, Hong Y, Nelson DM, Pichamuthu JE, Leeson CE, Wagner WR (2011) Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties. Biomacromol 12:3265–3274CrossRefGoogle Scholar
  22. Ma PM, Shen TF, Lin L, Dong WF, Chen MQ (2017) Cellulose-g-poly(d-lactide) nanohybrids induced significant low melt viscosity and fast crystallization of fully bio-based nanocomposites. Carbohydr Polym 155:498–506CrossRefGoogle Scholar
  23. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. Polym Sci Pt B-Polym Phys 52:791–806CrossRefGoogle Scholar
  24. Meesorn W, Shirole A, Vanhecke D, de Espinosa LM, Weder C (2017) A simple and versatile strategy to improve the mechanical properties of polymer nanocomposites with cellulose nanocrystals. Macromolecules 50:2364–2374CrossRefGoogle Scholar
  25. Mincheva R, Leclère P, Habibi Y, Raquez J-M, Dubois P (2014) Preparation of narrowly dispersed stereocomplex nanocrystals: a step towards all-poly (lactic acid) nanocomposites. J Mater Chem A 2:7402–7409CrossRefGoogle Scholar
  26. Natterodt JC, Sapkota J, Foster EJ, Weder C (2017) Polymer nanocomposites with cellulose nanocrystals featuring adaptive surface groups. Biomacromol 18:517–525CrossRefGoogle Scholar
  27. Noreen A, Zia KM, Zuber M, Tabasum S, Zahoor AF (2016) Bio-based polyurethane: an efficient and environment friendly coating systems: a review. Prog Org Coat 91:25–32CrossRefGoogle Scholar
  28. Pei AH, Malho JM, Ruokolainen J, Zhou Q, Berglund L (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44:4422–4427CrossRefGoogle Scholar
  29. Re GL, Benali S, Habibi Y, Raquez J-M, Dubois P (2014) Stereocomplexed PLA nanocomposites: from in situ polymerization to materials properties. Eur Polym J 54:138–150CrossRefGoogle Scholar
  30. Trache D, Hussin MH, Haafiz MKM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786CrossRefGoogle Scholar
  31. Wang H, Yu J, Fang H, Wei H, Wang X, Ding Y (2018a) Largely improved mechanical properties of a biodegradable polyurethane elastomer via polylactide stereocomplexation. Polymer 137:1–12CrossRefGoogle Scholar
  32. Wang J, Chiappone A, Roppolo I, Shao F, Fantino E, Lorusso M, Rentsch D, Dietliker K, Pirri CF, Grützmacher H (2018b) All-in-one cellulose nanocrystals for 3D printing of nanocomposite hydrogels. Angew Chem Int Ed 57:2353–2356CrossRefGoogle Scholar
  33. Wu H, Nagarajan S, Zhou LJ, Duan YX, Zhang JM (2016) Synthesis and characterization of cellulose nanocrystal-graft-poly(d-lactide) and its nanocomposite with poly(L-lactide). Polymer 103:365–375CrossRefGoogle Scholar
  34. Wu B, Zeng Q, Niu D, Yang W, Dong W, Chen M, Ma P (2019) Design of supertoughened and heat-resistant PlLA/elastomer blends by controlling the distribution of stereocomplex crystallites and the morphology. Macromolecules 52:1092–1103CrossRefGoogle Scholar
  35. Xie Q, Han L, Shan G, Bao Y, Pan P (2016) Polymorphic crystalline structure and crystal morphology of enantiomeric poly(lactic acid) blends tailored by a self-assemblable aryl amide nucleator. ACS Sustain Chem Eng 4:2680–2688CrossRefGoogle Scholar
  36. Xie Q, Wang S, Chen X, Zhou Y, Fang H, Li X, Cheng S, Ding Y (2018) Thermal stability and crystallization behavior of cellulose nanocrystals and their poly(l-lactide) nanocomposites: effects of surface ionic group and poly(d-lactide) grafting. Cellulose 25:6847–6862CrossRefGoogle Scholar
  37. Zhang J, Sato H, Tsuji H, Noda I, Ozaki Y (2005) Infrared spectroscopic study of CH3 OC interaction during poly(l-lactide)/poly(d-lactide) stereocomplex formation. Macromolecules 38:1822–1828CrossRefGoogle Scholar
  38. Zhang P, Tian R, Na B, Lv R, Liu Q (2015) Intermolecular ordering as the precursor for stereocomplex formation in the electrospun polylactide fibers. Polymer 60:221–227CrossRefGoogle Scholar
  39. Zhang D, Liu X, Wu G (2016) Forming CNT-guided stereocomplex networks in polylactide-based nanocomposites. Compos Sci Technol 128:8–16CrossRefGoogle Scholar
  40. Zhang D, Lin Y, Wu G (2017) Polylactide-based nanocomposites with stereocomplex networks enhanced by GO-g-PdLA. Compos Sci Technol 138:57–67CrossRefGoogle Scholar
  41. Zhou J, Cao H, Chang R, Shan G, Bao Y, Pan P (2018) Stereocomplexed and homochiral polyurethane elastomers with tunable crystallizability and multishape memory effects. ACS Macro Lett 7:233–238CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Functional Materials and DevicesHefei University of TechnologyHefeiPeople’s Republic of China
  2. 2.Instrumental Analysis CenterHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations