Advertisement

Cellulose

, Volume 26, Issue 15, pp 8313–8323 | Cite as

A kinetic study on the hydrolysis of corncob residues to levulinic acid in the FeCl3–NaCl system

  • Chao Wang
  • Guihua Yang
  • Xueming Zhang
  • Lupeng Shao
  • Gaojin Lyu
  • Jianzhen Mao
  • Shijie Liu
  • Feng XuEmail author
Original Research
  • 76 Downloads

Abstract

Levulinic acid (LA) production from corncob acid hydrolysis residues (CAHR) using FeCl3 as Lewis acid catalyst in green solutions of salt was investigated. The reaction kinetic relationships were determined in the temperature range of 160–180 °C, with FeCl3 concentrations of 0.12–0.36 M, and a reaction time of 0–60 min. The maximum LA concentration of 59.0 mol% (24.5 g/L) was achieved at 170 °C in a 30% NaCl solution containing 0.24 M FeCl3. A pseudo first-order kinetic model was proposed to describe the cellulose deconstruction to LA. The model agreed perfectly with the evolution in the concentrations of the major compounds such as glucose, 5-hydroxymethylfurfural and LA during the CAHR hydrolysis. The kinetic model developed for CAHR was in good agreement with that previously developed for other lignocellulosic systems. Based on our kinetic model and reaction system, the LA yield is increased at the lower end of the temperature range with the higher acid concentrations. The results indicated that the concentrated seawater after desalination could be a green solvent in the biorefinery.

Keywords

Kinetics Levulinic acid Corncob acid hydrolysis residues FeCl3 NaCl 

Notes

Acknowledgments

The authors are Grateful for the financial support of this research from the National Key R and D Program of China (2016YFD0600803).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

References

  1. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539–554CrossRefGoogle Scholar
  2. Bozell JJ, Moens L, Elliott D, Wang Y, Neuenscwander G, Fitzpatrick S, Bilski R, Jarnefeld J (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycl 28(3):227–239CrossRefGoogle Scholar
  3. Cai CM, Nagane N, Kumar R, Wyman CE (2014) Coupling metal halides with a co-solvent to produce furfural and 5-HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy. Green Chem 16(8):3819–3829CrossRefGoogle Scholar
  4. Deng L, Chang C, An R, Qi X, Xu G (2017) Metal sulfates-catalyzed butanolysis of cellulose: butyl levulinate production and optimization. Cellulose 24(12):5403–5415.  https://doi.org/10.1007/s10570-017-1530-4 CrossRefGoogle Scholar
  5. Ding D, Xi J, Wang J, Liu X, Lu G, Wang Y (2015) Production of methyl levulinate from cellulose: selectivity and mechanism study. Green Chem 17(7):4037–4044CrossRefGoogle Scholar
  6. Dussan K, Girisuta B, Haverty D, Leahy J, Hayes M (2013) Kinetics of levulinic acid and furfural production from Miscanthus × giganteus. Bioresour Technol 149:216–224CrossRefPubMedGoogle Scholar
  7. Girisuta B, Janssen LPBM, Heeres HJ (2006) A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chem 8:701–709CrossRefGoogle Scholar
  8. Girisuta B, Janssen L, Heeres H (2007) Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Ind Eng Chem Res 46(6):1696–1708CrossRefGoogle Scholar
  9. Girisuta B, Dussan K, Haverty D, Leahy J, Hayes M (2013) A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid. Chem Eng J 217:61–70CrossRefGoogle Scholar
  10. Guo Y, Li K, Yu X, Clark JH (2008) Mesoporous H3PW12O40-silica composite: efficient and reusable solid acid catalyst for the synthesis of diphenolic acid from levulinic acid. Appl Catal B 81(3):182–191CrossRefGoogle Scholar
  11. Guo Z, Ling Z, Wang C, Zhang X, Xu F (2018) Integration of facile deep eutectic solvents pretreatment for enhanced enzymatic hydrolysis and lignin valorization from industrial xylose residue. Bioresour Technol 265:334–339CrossRefGoogle Scholar
  12. Horvat J, Klaić B, Metelko B, Šunjić V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26(17):2111–2114CrossRefGoogle Scholar
  13. Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT (2008) γ-Valerolactone—a sustainable liquid for energy and carbon-based chemicals. Green Chem 10(2):238–242CrossRefGoogle Scholar
  14. Jiang Y, Yang L, Bohn CM, Li G, Han D, Mosier NS, Miller JT, Kenttämaa HI, Abu-Omar MM (2015) Speciation and kinetic study of iron promoted sugar conversion to 5-hydroxymethylfurfural (HMF) and levulinic acid (LA). Org Chem Front 2(10):1388–1396CrossRefGoogle Scholar
  15. Jing S, Cao X, Zhong L, Peng X, Zhang X, Wang S, Sun R (2016) In situ carbonic acid from CO2: a green acid for highly effective conversion of cellulose in the presence of Lewis acid. ACS Sustain Chem Eng 4(8):4146–4155CrossRefGoogle Scholar
  16. Kalyani DC, Fakin T, Horn SJ, Tschentscher R (2017) Valorisation of woody biomass by combining enzymatic saccharification and pyrolysis. Green Chem 19:3302–3312CrossRefGoogle Scholar
  17. Li J, Jiang Z, Hu L, Hu C (2014) Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system. ChemSusChem 7(9):2482–2488CrossRefPubMedGoogle Scholar
  18. Liu K, Lin X, Yue J, Li X, Fang X, Zhu M, Lin J, Qu Y, Xiao L (2010) High concentration ethanol production from corncob residues by fed-batch strategy. Bioresour Technol 101(13):4952–4958CrossRefPubMedGoogle Scholar
  19. Liu S, Lu H, Hu R, Shupe A, Lin L, Liang B (2012) A sustainable woody biomass biorefinery. Biotechnol Adv 30(4):785–810CrossRefPubMedGoogle Scholar
  20. Ramli NAS, Amin NAS (2016) Kinetic study of glucose conversion to levulinic acid over Fe/HY zeolite catalyst. Chem Eng J 283:150–159CrossRefGoogle Scholar
  21. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. NREL, GoldenGoogle Scholar
  22. Wang C, Lyu G, Yang G, Chen J, Jiang W (2014) Characterization and hydrothermal conversion of lignin produced from corncob acid hydrolysis residue. BioResources 9(3):4596–4607Google Scholar
  23. Wang C, Zhang L, Zhou T, Chen J, Xu F (2017a) Synergy of Lewis and Brønsted acids on catalytic hydrothermal decomposition of carbohydrates and corncob acid hydrolysis residues to 5-hydroxymethylfurfural. Sci Rep 7:40908CrossRefPubMedPubMedCentralGoogle Scholar
  24. Wang K, Ye J, Zhou M, Liu P, Liang X, Xu J, Jiang J (2017b) Selective conversion of cellulose to levulinic acid and furfural in sulfolane/water solvent. Cellulose 24(3):1383–1394CrossRefGoogle Scholar
  25. Wang C, Zhang Q, Chen Y, Zhang X, Xu F (2018a) Highly efficient conversion of xylose residues to levulinic acid over FeCl3 catalyst in green salt solutions. ACS Sustain Chem Eng 6(3):3154–3161CrossRefGoogle Scholar
  26. Wang C, Zhang Q, You T, Wang B, Dai H, Xu F (2018b) High yield production of 5-hydroxymethylfurfural from carbohydrates over phosphated TiO2–SiO2 heterogeneous catalyst. BioResources 13(4):7873–7885Google Scholar
  27. Wei W, Wu S (2017) Experimental and kinetic study of glucose conversion to levulinic acid catalyzed by synergy of Lewis and Brønsted acids. Chem Eng J 307:389–398CrossRefGoogle Scholar
  28. Weingarten R, Kim YT, Tompsett GA, Fernández A, Han KS, Hagaman EW, Conner WC, Dumesic JA, Huber GW (2013) Conversion of glucose into levulinic acid with solid metal (IV) phosphate catalysts. J Catal 304:123–134CrossRefGoogle Scholar
  29. Xu X, Lv X, Fu J, Lv X (2015) Catalytic decomposition of furfural residue with dilute sulfuric acid to produce levulinic acid in high temperature liquid water. J Chem Eng Chin Univ 29(6):1377–1382Google Scholar
  30. Yang GH, Wang C, Lyu GJ, Lucia LA, Chen JC (2015) Catalysis of glucose to 5-hydroxymethylfurfural using Sn-Beta zeolites and a Bronsted acid in biphasic systems. BioResources 10(3):5863–5875Google Scholar
  31. Zheng X, Zhi Z, Gu X, Li X, Zhang R, Lu X (2017) Kinetic study of levulinic acid production from corn stalk at mild temperature using FeCl3 as catalyst. Fuel 187:261–267CrossRefGoogle Scholar
  32. Zhi Z, Li N, Qiao Y, Zheng X, Wang H, Lu X (2015) Kinetic study of levulinic acid production from corn stalk at relatively high temperature using FeCl3 as catalyst: a simplified model evaluated. Ind Crops Prod 76:672–680CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Chao Wang
    • 1
  • Guihua Yang
    • 1
  • Xueming Zhang
    • 2
  • Lupeng Shao
    • 1
  • Gaojin Lyu
    • 1
  • Jianzhen Mao
    • 1
  • Shijie Liu
    • 3
  • Feng Xu
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of TechnologyShandong Academy of SciencesJinanChina
  2. 2.Beijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijingChina
  3. 3.College of Environmental Science and ForestryState University of New YorkSyracuseUSA

Personalised recommendations