Advertisement

Cellulose

, Volume 26, Issue 17, pp 9295–9309 | Cite as

New method for determining paper surface energy per contact angle

  • Hind El Omari
  • El-houssaine Ablouh
  • François Brouillette
  • Moha Taourirte
  • Ahmed BelfkiraEmail author
Original Research
  • 61 Downloads

Abstract

We propose a new method for determining the surface energy of paper and its components using the contact angle technique. Calendered sheets and model liquids were used in this study. A rapid evolution of the probe/handsheet contact angle with time was observed for all tested conditions. A suitable method for choosing the contact angle and a new model to determine the surface energy and its components is proposed. The total surface energy of paper hansheets (47.2–50.4 mN m−1) and its components (dispersive γd ~ 19–20, polar γp ~ 4–5 and hydrogen bond γh ~ 25–32) are in good agreement with literature data.

Graphic abstract

Keywords

Fiber Paper Roughness Porosity Contact angle Model Surface energy 

Notes

References

  1. Akinli-Kocak S (1997) The influence of fiber swelling on paper wetting. Ankara University, AnkaraGoogle Scholar
  2. Belfkira A, Montheard J-P (1994) Solubility parameters of poly(4-substituted α-acetoxystyrenes) and alternating copolymers of vinylidene cyanide with substituted styrenes. J Appl Polym Sci 51:1849–1859.  https://doi.org/10.1002/app.1994.070511102 CrossRefGoogle Scholar
  3. Chaiarrekij S, Apirakchaiskul A, Suvarnakich K, Kiatkamjornwong S (2011) Kapok I: characteristics of kapok fiber as a potential pulp source for papermaking. BioResources 7:0475–0488.  https://doi.org/10.15376/biores.7.1.0475-0488 CrossRefGoogle Scholar
  4. Cordeiro N, Gouveia C, Moraes AGO, Amico SC (2011) Natural fibers characterization by inverse gas chromatography. Carbohydr Polym 84:110–117.  https://doi.org/10.1016/j.carbpol.2010.11.008 CrossRefGoogle Scholar
  5. El Omari H, Belfkira A, Brouillette F (2017) Paper properties of typha latifolia, pennisetum alopecuroides, and agave americana fibers and their effect as a substitute for kraft pulp fibers. J Nat Fibers 14:426–436.  https://doi.org/10.1080/15440478.2016.1212766 CrossRefGoogle Scholar
  6. Fedors RF (1974) A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci 14:147–154.  https://doi.org/10.1002/pen.760140211 CrossRefGoogle Scholar
  7. Fowkes FM (1964) Attractive forces at interfaces. Ind Eng Chem 56:40–52.  https://doi.org/10.1021/ie50660a008 CrossRefGoogle Scholar
  8. Fox H, Zisman W (1950) The spreading of liquids on low energy surfaces. I. Polytetrafluoroethylene. J Colloid Sci 5:514–531.  https://doi.org/10.1016/0095-8522(50)90044-4 CrossRefGoogle Scholar
  9. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896.  https://doi.org/10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  10. Gamelas JAF (2013) The surface properties of cellulose and lignocellulosic materials assessed by inverse gas chromatography: a review. Cellulose 20:2675–2693.  https://doi.org/10.1007/s10570-013-0066-5 CrossRefGoogle Scholar
  11. Gellerstedt F, Gatenholm P (1999) Surface properties of lignocellulosic fibers bearing carboxylic groups. Cellulose 6:103–121.  https://doi.org/10.1023/A:1009239225050 CrossRefGoogle Scholar
  12. Gómez C, Zuluaga R, Putaux J-L et al (2012) Surface free energy of films of alkali-treated cellulose microfibrils from banana rachis. Compos Interfaces 19:29–37.  https://doi.org/10.1080/09276440.2012.687978 CrossRefGoogle Scholar
  13. Guo C, Zhou L, Lv J (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos 21:449–456.  https://doi.org/10.1177/096739111302100706 CrossRefGoogle Scholar
  14. Hansen CM (1967) The dimensional solubility parameter and solvent diffusion coefficient. Danish Technical Press, CopenhagenGoogle Scholar
  15. Hansen CM (2000) Hansen solubility parametersGoogle Scholar
  16. Hansen CM (2007) Hansen solubility parameters: a user’s handbook. CRC Press, Boca RatonCrossRefGoogle Scholar
  17. Hansen CM, Beerbower A (1971) Solubility parameters. Kirk-Othmer Encyclopedia of Chemical Technology, New YorkGoogle Scholar
  18. Hubbe MA, Gardner DJ, Shen W (2015) Contact angles and wettability of cellulosic surfaces: a review of proposed mechanisms and test strategies. BioResources 10:8657–8749.  https://doi.org/10.15376/biores.10.4.Hubbe_Gardner_Shen CrossRefGoogle Scholar
  19. Jacob PN, Berg JC (1994) Microcrystalline cellulose and two wood pulp fiber. Adsorpt J Int Adsorpt Soc 49:3086–3093Google Scholar
  20. Kontogeorgis GM, Kiil S (2016) Introduction to applied colloid and surface chemistry. Wiley, ChichesterCrossRefGoogle Scholar
  21. Lewin M, Pearce EM (1998) Handbook of fiber chemistry. Marcel Dekker, New YorkGoogle Scholar
  22. Mantanis GI, Young RA, Rowell RM (1995) Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2:1–22.  https://doi.org/10.1007/bf00812768 CrossRefGoogle Scholar
  23. Marmur A (2006) Soft contact: measurement and interpretation of contact angles. Soft Matter 2:12–17.  https://doi.org/10.1039/B514811C CrossRefGoogle Scholar
  24. Ministère des Affaires Sociales et de la santé (2013) Stratégie Nationale de Santé—Feuille de route. In: Ministère des Aff Soc la santéGoogle Scholar
  25. Mirvakili MN (2011) Superhydrophobic fibre networks loaded with functionalized fillers. University of British ColumbiaGoogle Scholar
  26. Moutinho I, Figueiredo M, Ferreira P (2007) Evaluating the surface energy of laboratory-made paper sheets by contact angle measurements. Peer-reviewed Handsheets 6:26–32Google Scholar
  27. Nakamura K, Hatakeyama T, Hatakeyama H (1981) Studies on bound water of cellulose by differential scanning calorimetry. Text Res J 51:607–613.  https://doi.org/10.1177/004051758105100909 CrossRefGoogle Scholar
  28. Nosonovsky M, Bhushan B (2007) Lotus effect: roughness-induced superhydrophobicity. Springer, Berlin, pp 1–40Google Scholar
  29. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747.  https://doi.org/10.1002/app.1969.070130815 CrossRefGoogle Scholar
  30. Papirer E, Brendle E, Balard H, Vergelati C (2000) Inverse gas chromatography investigation of the surface properties of cellulose. J Adhes Sci Technol 14:321–337.  https://doi.org/10.1163/156856100742627 CrossRefGoogle Scholar
  31. Peršin Z, Stana-Kleinschek K, Sfiligoj-Smole M et al (2004) Determining the surface free energy of cellulose materials with the powder contact angle method. Text Res J 74:55–62.  https://doi.org/10.1177/004051750407400110 CrossRefGoogle Scholar
  32. Philipp B, Schleicher H, Wagenknecht W (2007) The influence of cellulose structure on the swelling of cellulose in organic liquids. J Polym Sci Polym Symp 42:1531–1543.  https://doi.org/10.1002/polc.5070420356 CrossRefGoogle Scholar
  33. Quéré D (2008) Wetting and roughness. Annu Rev Mater Res 38:71–99.  https://doi.org/10.1146/annurev.matsci.38.060407.132434 CrossRefGoogle Scholar
  34. Ravindra R, Krovvidi KR, Khan AA (1998) Solubility parameter of chitin and chitosan. Carbohydr Polym 36:121–127.  https://doi.org/10.1016/S0144-8617(98)00020-4 CrossRefGoogle Scholar
  35. Rinaldi R, Reece J (2013) Solution-based deconstruction of (Ligno)-cellulose. Wiley, Aachen, pp 435–462Google Scholar
  36. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794.  https://doi.org/10.1177/004051755902901003 CrossRefGoogle Scholar
  37. Shen W, Sheng YJ, Parker IH (1999) Comparison of the surface energetics data of eucalypt fibers and some polymers obtained by contact angle and inverse gas chromatography methods. J Adhes Sci Technol 13:887–901.  https://doi.org/10.1163/156856199X00730 CrossRefGoogle Scholar
  38. Steele DF, Moreton RC, Staniforth JN et al (2008) Surface energy of microcrystalline cellulose determined by capillary intrusion and inverse gas chromatography. AAPS J 10:494–503.  https://doi.org/10.1208/s12248-008-9057-0 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Thode E, Guide R (1959) A thermodynamic interpretation of the swelling of cellulose in organic liquids. Tappi J 42:35–39Google Scholar
  40. Tze WT, Gardner DJ (2001) Contact angle and IGC measurements for probing surface-chemical changes in the recycling of wood pulp fibers. J Adhes Sci Technol 15:223–241.  https://doi.org/10.1163/156856101743427 CrossRefGoogle Scholar
  41. Vainio AY (2007) Interfibre bonding and fibre segment activation in paper observations on the phenomena and their influence on paper strength properties. Helsinki University of TechnologyGoogle Scholar
  42. Vainio A, Paulapuro H (2007) Interfiber bonding and fiber segment activation in paper. BioResources 2:442–458.  https://doi.org/10.15376/biores.2.3.442-458 CrossRefGoogle Scholar
  43. Van Oss CJ, Chaudhury MK, Good RJ (1988) Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem Rev 88:927–941.  https://doi.org/10.1021/cr00088a006 CrossRefGoogle Scholar
  44. Wågberg L (2009) Paper chemistry and technology. Walter de Gruyter, BerlinGoogle Scholar
  45. Wu W, Giese RFJ, van Oss CJ (1995) Evaluation of the Lifshitz-van der Waals/acid-base approach to determine surface tension components. Langmuir 11:379–382.  https://doi.org/10.1021/la00001a064 CrossRefGoogle Scholar
  46. Young T (1805) An essay on the cohesion of fluids. Philo Trans R Soc Lond 95:65–87.  https://doi.org/10.1098/rstl.1805.0005 CrossRefGoogle Scholar
  47. Żenkiewicz M (2007) Methods for the calculation of surface free energy of solids. J Achiev Mater 24:137–145Google Scholar
  48. Zisman WA (1964) Relation of the equilibrium contact angle to liquid and solid constitution, pp 1–51Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Hind El Omari
    • 1
  • El-houssaine Ablouh
    • 1
  • François Brouillette
    • 2
  • Moha Taourirte
    • 1
  • Ahmed Belfkira
    • 1
    Email author
  1. 1.Laboratory of Bioorganic and Macromolecular Chemistry, Department of Chemistry, Faculty of Sciences and TechnologyCadi Ayyad UniversityMarrakeshMorocco
  2. 2.Innovations Institute in Ecomaterials, Ecoproducts, and EcoEnergies - Biomass Based (I2E3)Université du Québec à Trois-RivièresTrois-RivièresCanada

Personalised recommendations