Advertisement

Cellulose

, Volume 26, Issue 16, pp 8543–8556 | Cite as

Effect of vacuum/pressure cycles on cell wall composition and structure of poplar wood

  • Alberto García-IruelaEmail author
  • Luis García Esteban
  • Francisco García Fernández
  • Paloma de Palacios
  • Alejandro B. Rodriguez-Navarro
  • Raquel Martín-Sampedro
  • María Eugenia Eugenio
Original Research
  • 120 Downloads

Abstract

A comparison was made of the hygroscopicity, cell wall chemical composition and crystallinity of recently peeled poplar (Populus spp.) wood and wood of the same species subjected to repeated cycles (20, 60 and 80) of vacuum/pressure (85 kPa/600 kPa) and soaking in an autoclave followed by oven drying. The 15 and 35 °C sorption isotherms were obtained using the saturated salt method and fitted with the Guggenheim–Anderson–de Boer model. Chemical composition was determined and the infrared spectra and X-ray powder and 2D diffractograms were obtained to identify differences in the wood with and without cycles. The cycles caused a statistically significant decrease in equilibrium moisture content (EMC) between the wood without cycles and the wood with cycles, a statistically significant lower contribution by the monolayer as the number of cycles increased (in the 15 °C isotherm in adsorption without cycles from 8.12% EMC to 6.16% with 80 cycles, in desorption from 10.23 to 8.13%; in the 35 °C isotherm from 7.45 to 5.57% in adsorption and from 8.86 to 6.54% in desorption), a decrease in the area of the hysteresis loop with significant differences between the wood without cycles and the wood with cycles, a statistically significant decrease in the percentage of cell wall components (in cellulose and extractives, in lignin content between the wood without cycles and wood with 60 and 80 cycles, and in hemicellulose between the wood without cycles and the wood with 80 cycles), a statistically significant increase in crystallinity between the wood without cycles (CRI% 52.1%) and the wood with cycles (CRI% 81.60–92.50%), and reorganisation of the cell wall ultrastructure, as seen in the increased size of the cellulose crystal of the fraction oriented parallel to the fibre.

Keywords

Cycles Sorption Vacuum/pressure Chemical composition FTIR XRD-technique 

Notes

Supplementary material

10570_2019_2692_MOESM1_ESM.docx (251 kb)
Supplementary material 1 (DOCX 250 kb)

References

  1. AENOR (2013) Standard UNE-EN 14080. Estructuras de madera. Madera laminada encolada y madera maciza encolada. Requisitos Anexo C. Ensayo de delaminación en planos de encoladoGoogle Scholar
  2. Avramidis S (1997) The basics of sorption. In: Proceedings of international conference of COST action E8: mechanical performance of wood and wood products, Copenhagen, pp 1–16Google Scholar
  3. Broda M, Majka J, Olek W, Mazela B (2018) Dimensional stability and hygroscopic properties of waterlogged archaeological wood treated with alkoxysilanes. Int Biodeterior Biodegrad 133:34–41.  https://doi.org/10.1016/j.ibiod.2018.06.007 CrossRefGoogle Scholar
  4. Čermák P, Vahtikari K, Rautkari L, Laine K, Horáček P, Baar J (2016) The effect of wetting cycles on moisture behaviour of thermally modified Scots pine (Pinus sylvestris L.) wood. J Mater Sci 51(3):1504–1511.  https://doi.org/10.1007/s10853-015-9471-5 CrossRefGoogle Scholar
  5. Christensen GN, Kelsey KE (1959) The rate of sorption of water vapor by wood. Holz Roh Werkst 17:178–188CrossRefGoogle Scholar
  6. Dominguez-Gasca N, Benavides-Reyes C, Sánchez-Rodríguez E, Rodríguez-Navarro AB (2019) Changes in avian cortical and medullary bone mineral composition and organization during acid-induced demineralization. Eur J Miner.  https://doi.org/10.1127/ejm/2019/0031-2826 CrossRefGoogle Scholar
  7. Easty DB, Malcolm EW (1982) Estimation of pulping yield in continuous digesters from carbohydrate and lignin determinations. Tappi J 65:78–80Google Scholar
  8. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, New YorkCrossRefGoogle Scholar
  9. Esteban LG, Gril J, de Palacios P, Guindeo A (2005) Reduction of wood hygroscopicity and associated dimensional response by repeated humidity cycles. Ann For Sci 62:275–284.  https://doi.org/10.1051/forest:2005020 CrossRefGoogle Scholar
  10. Esteban LG, Fernandez FG, Guindeo A, de Palacios P, Gril J (2006) Comparison of the hygroscopic behaviour of 205-year-old and recently cut juvenile wood from Pinus sylvestris L. Ann For Sci 63:309–317.  https://doi.org/10.1051/forest:2006010 CrossRefGoogle Scholar
  11. Esteban LG, de Palacios P, Fernandez FG, Guindeo A, Cano NN (2008a) Sorption and thermodynamic properties of old and new Pinus sylvestris wood. Wood Fiber Sci 40:111–121Google Scholar
  12. Esteban LG, de Palacios P, Fernandez FG, Guindeo A, Conde M, Baonza V (2008b) Sorption and thermodynamic properties of juvenile Pinus sylvestris L. wood after 103 years of submersion. Holzforschung 62:745–751.  https://doi.org/10.1515/HF.2008.106 CrossRefGoogle Scholar
  13. Esteban LG, de Palacios P, García Fernandez F, Martin JA, Genova M, Fernandez-Golfin JI (2009) Sorption and thermodynamic properties of buried juvenile Pinus sylvestris L. wood aged 1,170 ± 40 BP. Wood Sci Technol 43:140–151.  https://doi.org/10.1007/s00226-009-0261-6 CrossRefGoogle Scholar
  14. Esteban LG, de Palacios P, García Fernandez F, García-Amorena I (2010) Effects of burial of Quercus spp. wood aged 5910 ± 250 BP on sorption and thermodynamic properties. Int Biodeterior Biodegrad 64:371–377.  https://doi.org/10.1016/j.ibiod.2010.01.010 CrossRefGoogle Scholar
  15. Fredriksson M, Thybring EE (2018) Scanning or desorption isotherms? Characterising sorption hysteresis of wood. Cellulose 25(8):4477–4485.  https://doi.org/10.1007/s10570-018-1898-9 CrossRefGoogle Scholar
  16. French AD, Kim HJ (2018) Cotton fiber structure. In: Fang D (ed) Cotton fiber, physics and biology. Springer, New York, pp 13–39CrossRefGoogle Scholar
  17. Hernandez RE (2007) Moisture sorption properties of hardwoods as affected by their extraneous substances, wood density, and interlocked grain. Wood Fiber Sci 39:132–145Google Scholar
  18. Hill CAS (2006) Wood modification. Chemical, thermal and other processes. Wiley, LondonCrossRefGoogle Scholar
  19. Hill CAS, Jones D (1996) The dimensional stabilisation of Corsican pine sapwood by reaction with carboxylic acid anhydrides. The effect of chain length. Holzforschung 50:457–462.  https://doi.org/10.1515/hfsg.1996.50.5.457 CrossRefGoogle Scholar
  20. Hill CAS, Jones D (1999) Dimensional changes in Corsican pine sapwood due to chemical modification with linear chain anhydrides. Holzforschung 53:267–271.  https://doi.org/10.1515/HF.1999.045 CrossRefGoogle Scholar
  21. Hill CAS, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112:1524–1537.  https://doi.org/10.1002/app.29725 CrossRefGoogle Scholar
  22. Hill CAS, Norton AJ, Newman G (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514.  https://doi.org/10.1007/s00226-010-0305-y CrossRefGoogle Scholar
  23. Jones PD, Schimleck LR, Peter GF, Daniels RF, Clark A III (2006) Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy. Wood Sci Technol 40:709–720.  https://doi.org/10.1007/s00226-006-0085-6 CrossRefGoogle Scholar
  24. Jowitt R, Wagstaffe PJ (1989) The certification of water content of microcrystalline cellulose (MCC) at 10 water activities. Commission of the European Communities. Community Bureau of Reference. BCR. CRM, EUR 12429, EN, Brussels, 302Google Scholar
  25. Majka J, Czajkowski L, Olek W (2016) Effects of cyclic changes in relative humidity on the sorption hysteresis of thermally modified spruce wood. BioResources 11(2):5265–5275.  https://doi.org/10.15376/biores.11.2.5265-5275 CrossRefGoogle Scholar
  26. Rautkari L, Hill C, Curling S, Jalaludin Z, Ormondroyd G (2013) What is the role of the accessibility of wood hydroxyl groups in controlling moisture content? J Mater Sci 48:6352–6356.  https://doi.org/10.1007/s10853-013-7434-2 CrossRefGoogle Scholar
  27. Rowell RM (1980) Distribution of reacted chemicals in southern pine modified with methyl isocyanate. Wood Sci 13:102–110Google Scholar
  28. Siau JF (1995) Wood: influence of moisture on physical properties. Virginia Polytechnic Institute and State University, BlackburgGoogle Scholar
  29. Simon C, Esteban LG, de Palacios P, Fernandez FG, García-Iruela A, Martín-Sampedro R, Eugenio ME (2017) Sorption and thermodynamic properties of wood of Pinus canariensis C. Sm. ex DC. buried in volcanic ash during eruption. Wood Sci Technol 51:517–534.  https://doi.org/10.1007/s00226-016-0884-3 CrossRefGoogle Scholar
  30. Simpson W (1980) Sorption theories applied to wood. Wood Fiber Sci 12:183–195Google Scholar
  31. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass. National Renewable Energy Laboratory (NREL) Laboratory Analytical Procedure (LAP). http://www.nrel.gov/biomass/pdfs/42619.pdf. Accessed 27 March 2015
  32. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker S (2012) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory (NREL) Laboratory Analytical Procedure (LAP). http://www.nrel.gov/biomass/pdfs/42618.pdf. Accessed 27 March 2015
  33. Song KL, Yin YF, Salmen L, Xiao F, Jiang X (2014) Changes in the properties of wood cell walls during the transformation from sapwood to heartwood. J Mater Sci 49:1734–1742.  https://doi.org/10.1007/s10853-013-7860-1 CrossRefGoogle Scholar
  34. Themelin A, Rebollo J, Thibaut A (1997) Method for defining the behaviour of lignocellulosic produces at sorption: application to tropical wood species. In: Proceedings of international conference of COST action E8: mechanical performance of wood and wood products, Copenhagen, pp 17–32Google Scholar
  35. Thybring EE, Thygesen LG, Burgert I (2017) Hydroxyl accessibility in wood cell walls as affected by drying and re-wetting procedures. Cellulose 24:2375–2384.  https://doi.org/10.1007/s10570-017-1278-x CrossRefGoogle Scholar
  36. Toby BH (2006) R factors in Rietveld analysis: how good is good enough? Powder Diffr 21:67–70.  https://doi.org/10.1154/1.2179804 CrossRefGoogle Scholar
  37. Wangaard FF, Granados LA (1967) The effect of extractives on water-vapor sorption by wood. Wood Sci Technol 1:253–277CrossRefGoogle Scholar
  38. Wentzel M, Altgen M, Militz H (2018) Analyzing reversible changes in hygroscopicity of thermally modified eucalypt wood from open and closed reactor systems. Wood Sci Technol 52:889–907.  https://doi.org/10.1007/s00226-018-1012-3 CrossRefGoogle Scholar
  39. Willems W (2018) Hygroscopic wood moisture: single and dimerized water molecules at hydroxyl-pair sites? Wood Sci Technol 52(3):777–791.  https://doi.org/10.1007/s00226-018-0998-x CrossRefGoogle Scholar
  40. Zelinka SL, Glass SV, Thybring EE (2018) Myth versus reality: do parabolic sorption isotherm models reflect actual wood–water thermodynamics? Wood Sci Technol 52:1701–1706.  https://doi.org/10.1007/s00226-018-1035-9 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Alberto García-Iruela
    • 1
    Email author
  • Luis García Esteban
    • 1
  • Francisco García Fernández
    • 1
  • Paloma de Palacios
    • 1
  • Alejandro B. Rodriguez-Navarro
    • 2
  • Raquel Martín-Sampedro
    • 3
  • María Eugenia Eugenio
    • 4
  1. 1.Departamento de Sistemas Y Recursos Naturales, Cátedra de Tecnología de la Madera, Escuela Técnica Superior de Ingenieros de Montes, Forestal y del Medio NaturalUniversidad Politécnica de Madrid, Ciudad UniversitariaMadridSpain
  2. 2.Departamento de Mineralogía y PetrologíaUniversidad de GranadaGranadaSpain
  3. 3.Departamento de Nuevas Arquitecturas en Química de MaterialesInstituto de Ciencia de Materiales de Madrid (ICMM-CSIC)MadridSpain
  4. 4.Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIAMadridSpain

Personalised recommendations