, Volume 26, Issue 16, pp 8877–8894 | Cite as

Antibacterial, highly hydrophobic and semi transparent Ag/plasma polymer nanocomposite coating on cotton fabric obtained by plasma based co-deposition

  • Muhammad IrfanEmail author
  • Oleksandr Polonskyi
  • Alexander Hinz
  • Chiara Mollea
  • Francesca Bosco
  • Thomas Strunskus
  • Cristina Balagna
  • Sergio Perero
  • Franz Faupel
  • Monica Ferraris
Original Research


This study aims at deposition and characterization of antibacterial, hydrophobic and semitransparent metal/plasma polymer nanocomposite coating, containing Ag nanoparticles, onto cotton fabrics intended to be used in medical applications. The nano composite coatings were obtained via a simple, one step and ecofriendly plasma based co-deposition approach where silver was magnetron sputtered simultaneously with plasma polymerization of hexamethyldisiloxane (HMDSO) monomer. The nanocomposite thin films containing different concentration of silver were deposited either by varying silver sputter rate or thickness of the plasma polymer matrix to obtain a good balance between optical properties of the coated fabric and its long term antibacterial performance. The obtained coatings were investigated in detail with respect to their composition, morphology, optical properties, nanoparticle size distribution, silver ion release efficiency, antibacterial performance, water contact angle and washing stability of the coating. The thickness of the plasma matrix was found to be more important in controlling the release of silver ions as well as affecting the optical properties of the coating. The water contact angle on the coated fabric was up to 145°, close to super hydrophobicity. The coating showed effective antibacterial efficacy against Staphylococcus epidermidis (a Gram positive bacterium) which was present even when fabric was subjected to 10 repeated washing cycles indicating good washing stability of the coating.


Plasma polymerization Sputtering Silver nanoparticles Plasma polymer Optical properties Silver ion release properties 



  1. Alexander MR, Short RD, Jones FR, Stollenwerk M, Zabold J, Michaeli W (1996) An X-ray photoelectron spectroscopic investigation into the chemical structure of deposits formed from hexamethyldisiloxane/oxygen plasmas. J Mater Sci 31:1879–1885CrossRefGoogle Scholar
  2. Ali SW, Purwar R, Joshi M, Rajendran S (2014) Antibacterial properties of Aloe vera gel-finished cotton fabric. Cellulose 21:2063–2072CrossRefGoogle Scholar
  3. Bakr O, Amendola V, Aikens C, Wenseleers W, Li R, Negro LD, Schatz GC, Stellacci F (2009) Silver nanoparticles with broad multiband linear optical absorption. Angew Chem 121:6035–6040CrossRefGoogle Scholar
  4. Balagna C, Perero S, Ferraris S, Miola M, Fucale G, Manfredotti C, Battiato A, Santella D, Vernè E, Vittone E, Ferraris M (2012) Antibacterial coating on polymer for space application. Mater Chem Phys 135:714–722CrossRefGoogle Scholar
  5. Beyene H, Tichelaar F, Peeters P, Kolev I, Sanden M, Creatore M (2010) Hybrid sputtering-remote PECVD deposition of Au nanoparticles on Sio2 layers for surface plasmon resonance-based colored coatings. Plasma Process Polym 7:657–664CrossRefGoogle Scholar
  6. Brunon C, Chadeau E, Oulahal N, Grossiord C, Dubost L, Bessueille F (2011) Characterization of plasma enhanced chemical vapor deposition-physical vapor deposition transparent deposits on textiles to trigger various antimicrobial properties to food industry textiles. Thin Solid Films 519:5838–5845CrossRefGoogle Scholar
  7. Chadeau E, Oulahal N, Dubost L, Favergeon F, Degraeve P (2010) Anti-listeria innocua activity of silver functionalised textile prepared with plasma technology. Food Control 21:505–512CrossRefGoogle Scholar
  8. Deng X, Leys C, Vujosevic D, Vuksanovic V, Uros Cvelbar DG, Morent R et al (2014) Engineering of composite organosilicon thin films with embedded silver nanoparticles via atmospheric pressure plasma process for antibacterial activity. Plasma Process Polym 11:921–930CrossRefGoogle Scholar
  9. Despax B, Raynaud P (2007) Deposition of ‘‘polysiloxane’’ thin films containing silver particles by an RF asymmetrical discharge. Plasma Process Polym 4:127–134CrossRefGoogle Scholar
  10. Drábik M, Pešička J, Biederman H, Hegemann D (2015) Long-term aging of Ag/a-C:H:O nanocomposite coatings in air and in aqueous environment. Sci Technol Adv Mater 16:2CrossRefGoogle Scholar
  11. El-Nahhal I, Elmanama A, Amara N, Qodih F, Selmane M, Chehimi M (2018) The efficacy of surfactants in stabilizing coating of nano-structured CuO particles onto the surface of cotton fibers and their antimicrobial activity. Mater Chem Phys 215:221–228CrossRefGoogle Scholar
  12. Fei Z, Liu B, Zhu M, Wang W, Yu D (2018) Antibacterial finishing of cotton fabrics based on thiol-maleimide click chemistry. Cellulose 25:3179–3188CrossRefGoogle Scholar
  13. Foksowicz-Flaczyk J, Walentowska J, Przybylak M, Maciejewski H (2016) Multifunctional durable properties of textile materials modified by biocidal agents in the sol–gel process. Surf Coat Technol 304:160–166CrossRefGoogle Scholar
  14. Gao Y, Cranston R (2010) An effective antimicrobial treatment for wool using polyhexamethylene biguanide as the biocide, part 1: biocide uptake and antimicrobial activity. J Appl Polym Sci 117:3075–3082CrossRefGoogle Scholar
  15. Gharibshahi L, Saion E, Gharibshahi W, Shaari AM (2017) Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method. Materials 10:402CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ghayempour S, Montazer M (2017) Ultrasound irradiation based in situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric. Ultrason Sonochemistry 34:458–465CrossRefGoogle Scholar
  17. Hanus J, Drabik M, Hlidek P, Biederman H, Radnoczi G, Slavinska D (2009) Some remarks on Ag/C: H nanocomposite films. Vacuum 83:454–456CrossRefGoogle Scholar
  18. Hao L, Gao T, Xu W, Wang X, Yang S, Liu X (2016) Preparation of crosslinked polysiloxane/SiO2 nanocomposite viain-situ condensation and its surface modification on cotton fabrics. Appl Surf Sci 371:281–288CrossRefGoogle Scholar
  19. Hlídek P, Biederman H, Choukourov A, Slavínská D (2009) Behavior of polymeric matrices containing silver inclusions, 2-oxidative aging of nanocomposite Ag/C: H and Ag/C: H: O films. Plasma Process Polym 6:34–44CrossRefGoogle Scholar
  20. Irfan M, Perero S, Miola M, Maina G, Ferri A, Ferraris M et al (2017) Antimicrobial functionalization of cotton fabric with silver nanoclusters/silica composite coating via RF co-sputtering technique. Cellulose 24:2331–2345CrossRefGoogle Scholar
  21. Jamuna-Thevi K, Bakar SA, Ibrahim S, Shahab N, Toff MRM (2011) Quantification of silver ion release, in vitro cytotoxicity and antibacterial properties of nanostuctured Ag doped TiO2 coatings on stainless steel deposited by RF magnetron sputtering. Vacuum 86:235–241CrossRefGoogle Scholar
  22. Körner E, Aguirre M, Fortunato G, Ritter A et al (2010) Formation and distribution of silver nanoparticles in a functional plasma polymer matrix and related Ag+ release properties. Plasma Process Polym 7:619–625CrossRefGoogle Scholar
  23. Kratochvíl J, Štěrba J, Lieskovská J, Langhansová H, Kuzminova A, Khalakhan I, Kylián O, Straňák V (2018) Antibacterial effect of Cu/C: F nanocomposites deposited on PEEK substrates. Mater Lett 230:96–99CrossRefGoogle Scholar
  24. Kuzminova A, Beranová J, Polonskyi O, Shelemin A, Kyliána O, Choukourov A (2016) Antibacterial nanocomposite coatings produced by means of gas aggregation source of silver nanoparticles. Surf Coat Technol 25:225–230CrossRefGoogle Scholar
  25. Kylián O, Kratochvíl J, Petr M, Kuzminova A, Slavínská Danka, Biederman H (2017) Ag/C: F Antibacterial and hydrophobic nanocomposite coatings. Funct Mater Lett 10:1–4CrossRefGoogle Scholar
  26. Lin J, Chen X, Chen C, Hu J, Zhou C, Cai X et al (2018) Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers. Appl Mater Interfaces 10:6124–6136CrossRefGoogle Scholar
  27. Liu Y, Li J, Cheng X, Ren X, Huang T (2015) Self-assembled antibacterial coating by N-halamine polyelectrolytes on a cellulose substrate. J Mater Chem B 3:1446–1454CrossRefGoogle Scholar
  28. Mariselvam R, Ranjitsingh R, Selvakumar M, Krishnamoorthy R, Alshatwi A (2017) Eco friendly natural dyes from Syzygium cumini (L) (Jambolan) Fruit seed endosperm and to preparation of antimicrobial fabric and their washing properties. Fibers Polym 18:460–464CrossRefGoogle Scholar
  29. Moulder J, Chastain J (1992) Handbook of x-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Physical Electronics Division, Perkin-Elmer Corporation, WalthamGoogle Scholar
  30. Perelshtein I, Lipovsky A, Perkas N, Tzanov T, Arguirova M, Leseva M (2015) Making the hospital a safer place by sonochemical coating of all its textiles with antibacterial nanoparticles. Ultrason Sonochemistry 25:82–88CrossRefGoogle Scholar
  31. Peter T, Wegner M, Zaporojtchenko V, Strunskus T, Bornholdt S, Kersten H et al (2011) Metal/polymer nanocomposite thin films prepared by plasma polymerization and high pressure magnetron sputtering. Surf Coat Technol 205:S38–S41CrossRefGoogle Scholar
  32. Pisitsak P, Ruktanonchai U (2014) Preparation, characterization, and in vitro evaluation of antibacterial sol–gel coated cotton textiles with prolonged release of curcumin. Text Res J 85:949–959CrossRefGoogle Scholar
  33. Ponomarev V, Sukhorukova I, Sheveyko A, Permyakova E, Manakhov A, Ignatov S et al (2018) Antibacterial performance of TiCaPCON Films incorporated with Ag, Pt, and Zn: bactericidal ions versus surface microgalvanic interactions. Appl Mater Interfaces 10:24406–24420CrossRefGoogle Scholar
  34. Radeva E, Georgieva V, Lazarov J, Gadjanova V, Tsankov D (2014) Plasma polymerized hexamethyldisiloxane thin films for NO2 gas sensor application. Dig J Nanomater Biostructures 9:459–466Google Scholar
  35. Ramirez D, Jaramillo F (2018) Improved mechanical and antibacterial properties of thermoplastic polyurethanes by efficient double functionalization of silver nanoparticles. J Appl Polym Sci 135:46180CrossRefGoogle Scholar
  36. Rau C, Kulisch W (1994) Mechanisms of plasma polymerization of various silico-organic monomers. Thin Solid Films 249:28–37CrossRefGoogle Scholar
  37. Saulou C, Despax B, Raynaud P, Zanna S, Seyeux A, Marcus P et al (2012) Plasma-mediated nanosilver-organosilicon composite films deposited on stainless steel: synthesis, surface characterization, and evaluation of anti-adhesive and anti-microbial properties on the model yeast saccharomyces cerevisiae. Plasma Process Polym 9:324–338CrossRefGoogle Scholar
  38. Savoia D (2012) Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol 7:979–990CrossRefGoogle Scholar
  39. Schmittgens R, Wolf M, Schultheiss E (2009) A versatile system for large area coating of nanocomposite thin films. Plasma Process Polym 6:S912–S916CrossRefGoogle Scholar
  40. Stawski D, Sahariah P, Hjálmarsdóttir M, Wojciechowska D, Puchalski M, Másson M (2016) N, N, N-trimethyl chitosan as an efficient antibacterial agent for polypropylene and polylactide nonwovens. J Text Inst 108:1041–1049CrossRefGoogle Scholar
  41. Tomšič B, Simončič B, Orel B, Černe L, Tavčer P, Zorko M et al (2008) Sol–gel coating of cellulose fibres with antimicrobial and repellent properties. J Sol Gel Sci Technol 47:44–57CrossRefGoogle Scholar
  42. Wang RX, Tao XM, Wang Y, Wang GF, Shang SM (2010) Microstructures and electrical conductance of silver nanocrystalline thin films on flexible polymer substrates. Surf Coat Technol 204:1206–1210CrossRefGoogle Scholar
  43. Wiley BJ, Im SH, Li Z-Y, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem 110:15666–15675CrossRefGoogle Scholar
  44. Wu T, Lu F, Wen QY, Lu B, Rong B, Dai F et al (2018) Ovel strategy for obtaining uniformly dispersed silver nanoparticles on soluble cotton wound dressing through carboxymethylation and in situ reduction: antimicrobial activity and histological assessment in animal model. Cellulose 25:5361–5376CrossRefGoogle Scholar
  45. Xu Q, Xie L, Diao H, Li F, Zhang Y, Fu F et al (2017) Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan. Carbohydr Polym 177:187–193CrossRefGoogle Scholar
  46. Zemljič L, Peršin Z, Šauperl O, Rudolf A, Kostić M (2017) Medical textiles based on viscose rayon fabrics coated with chitosan-encapsulated iodine: antibacterial and antioxidant properties. Text Res J 88:2519–2531CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Muhammad Irfan
    • 1
    • 3
    Email author
  • Oleksandr Polonskyi
    • 2
  • Alexander Hinz
    • 2
  • Chiara Mollea
    • 1
  • Francesca Bosco
    • 1
  • Thomas Strunskus
    • 2
  • Cristina Balagna
    • 1
  • Sergio Perero
    • 1
  • Franz Faupel
    • 2
  • Monica Ferraris
    • 1
  1. 1.Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
  2. 2.Chair for Multicomponent Materials, Faculty of EngineeringKiel UniversityKielGermany
  3. 3.Department of Materials and TestingNational Textile UniversityFaisalabadPakistan

Personalised recommendations