, Volume 26, Issue 17, pp 9057–9069 | Cite as

Effect of micro-crystalline cellulose particles on mechanical properties of alkaline treated jute fabric reinforced green epoxy composite

  • Muhammad Muslim Rehman
  • Muhammad Zeeshan
  • Khubab Shaker
  • Yasir NawabEmail author
Original Research


Inferior mechanical properties are hindering the growth of using natural fibre reinforced polymeric composites in many structural applications. One of the popular solutions to this issue being reported in the literature is the addition of nano or micro reinforcements such as carbon nanotubes, ceramic particles, glass particles, clay, rubber additive etc., which is expensive. Furthermore, questions are raised over biodegradability of said composites. The current study investigated the effect of micro-crystalline cellulose (MCC) particles and alkaline treatment on the tensile, bending and impact properties of jute woven fabric reinforced bio-epoxy composite. The composite samples were made by compression moulding using manufacturer provided curing conditions. Alkaline treatment of jute fabric was found to have positive relationships with tensile and flexural properties, whereas it had negative with the impact strength of bio-composite. It is found that up to 7% addition of MCC particles, tensile, bending and charpy impact strength were improved by 48%, 52% and 100% respectively. Beyond this percentage, the mechanical properties were found to be deteriorated.


Green composite Jute fibre Alkaline treatment Micro-crystalline cellulose particle Mechanical properties 



The support of Higher Education Commission of Pakistan under Research Project NRPU 4239 is acknowledged.


  1. Acha BA, Reboredo MM, Marcovich NE (2007) Creep and dynamic mechanical behavior of PP–jute composites: effect of the interfacial adhesion. Compos A Appl Sci Manuf 38(6):1507–1516. CrossRefGoogle Scholar
  2. Afrouzian A, Movahhedi Aleni H, Liaghat G, Ahmadi H (2017) Effect of nano-particles on the tensile, flexural and perforation properties of the glass/epoxy composites. J Reinf Plast Compos 36(12):900–916. CrossRefGoogle Scholar
  3. Agwuncha SC, Anusionwu CG, Owonubi SJ, Sadiku ER, Busuguma UA, Ibrahim ID (2019) Extraction of cellulose nanofibers and their eco/friendly polymer composites. In: Sustainable polymer composites and nanocomposites, pp 37–64. CrossRefGoogle Scholar
  4. Ashori A, Nourbakhsh A (2010) Performance properties of microcrystalline cellulose as a reinforcing agent in wood plastic composites. Compos B Eng 41(7):578–581. CrossRefGoogle Scholar
  5. Chang TE, Jensen LR, Kisliuk A, Pipes RB, Pyrz R, Sokolov AP (2005) Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer 46(2):439–444. CrossRefGoogle Scholar
  6. Chuayjuljit S, Su-uthai S, Charuchinda S (2010) Poly(vinyl chloride) film filled with microcrystalline cellulose prepared from cotton fabric waste: properties and biodegradability study. Waste Manag Res 28(2):109–117. CrossRefGoogle Scholar
  7. Colom X, Carrasco F, Pagès P, Cañavate J (2003) Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites. Compos Sci Technol 63(2):161–169. CrossRefGoogle Scholar
  8. Devendra K, Rangaswamy T (2013) Strength characterization of E-glass fiber reinforced epoxy composites with filler materials. J Miner Mater Charact Eng 1(6):353–357. CrossRefGoogle Scholar
  9. Domun N, Paton K, Hadavinia H, Sainsbury T, Zhang T, Mohamud H (2017) Enhancement of fracture toughness of epoxy nanocomposites by combining nanotubes and nanosheets as fillers. Materials 10(10):1179. CrossRefPubMedCentralGoogle Scholar
  10. Faruk O, Bledzki AK, Fink H-P, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299(1):9–26. CrossRefGoogle Scholar
  11. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos B Eng 39(6):933–961. CrossRefGoogle Scholar
  12. Gandini A, Belgacem MN (2011) Modifying cellulose fiber surfaces in the manufacture of natural fiber composites. In Zafeiropoulos NE (ed) Interface engineering of natural fibre composites for maximum performance, pp 3–42. CrossRefGoogle Scholar
  13. Gassan J, Bledzki AK (1999) Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos Sci Technol 59(9):1303–1309. CrossRefGoogle Scholar
  14. Gironès J, Méndez JA, Boufi S, Vilaseca F, Mutjé P (2007) Effect of silane coupling agents on the properties of pine fibers/polypropylene composites. J Appl Polym Sci 103(6):3706–3717. CrossRefGoogle Scholar
  15. Gomes A, Matsuo T, Goda K, Ohgi J (2007) Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Compos A Appl Sci Manuf 38(8):1811–1820. CrossRefGoogle Scholar
  16. Gopinath A, Kumar MS, Elayaperumal A (2014) Experimental investigations on mechanical properties of jute fiber reinforced composites with polyester and epoxy resin matrices. Procedia Eng 97:2052–2063. CrossRefGoogle Scholar
  17. Goriparthi BK, Suman KNS, Mohan Rao N (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos A Appl Sci Manuf 43(10):1800–1808. CrossRefGoogle Scholar
  18. Haafiz MKM, Hassan A, Zakaria Z, Inuwa IM, Islam MS, Jawaid M (2013) Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydr Polym 98(1):139–145. CrossRefGoogle Scholar
  19. Hulugappa B, Achutha MV, Suresha B (2016) Effect of fillers on mechanical properties and fracture toughness of glass fabric reinforced epoxy composites. Journal of Minerals and Materials Characterization and Engineering 4(1):1–14. CrossRefGoogle Scholar
  20. Ilyas RA, Sapuan SM, Sanyang ML, Ishak MR, Zainudin ES (2018a) Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: a review. Curr Anal Chem 14(3):203–225. CrossRefGoogle Scholar
  21. Ilyas RA, Sapuan SM, Ishak MR (2018b) Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga pinnata). Carbohydr Polym 181:1038–1051. CrossRefGoogle Scholar
  22. Ilyas RA, Sapuan SM, Ishak MR, Zainudin ES (2018c) Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydr Polym 202:186–202. CrossRefPubMedGoogle Scholar
  23. Ilyas RA, Sapuan SM, Ishak MR, Zainudin ES (2019a) Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): effect of cycles on their yield, physic-chemical, morphological and thermal behavior. Int J Biol Macromol 123:379–388. CrossRefPubMedGoogle Scholar
  24. Ilyas RA, Sapuan SM, Ibrahim R, Abral H, Ishak MR, Zainudin ES, Asrofi M, Atikah MSN, Huzaifah MRM, Radzi AM, Azammi AMN, Jumaidin R (2019b) Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: a comprehensive approach from macro to nano scale. Journal of Materials Research and Technology 8(3):2753–2766. CrossRefGoogle Scholar
  25. Jabbar A, Militký J, Wiener J, Kale BM, Ali U, Rwawiire S (2017) Nanocellulose coated woven jute/green epoxy composites: characterization of mechanical and dynamic mechanical behavior. Compos Struct 161:340–349. CrossRefGoogle Scholar
  26. Jajam KC, Tippur HV (2012) Quasi-static and dynamic fracture behavior of particulate polymer composites: a study of nano- vs. micro-size filler and loading-rate effects. Compos B Eng 43(8):3467–3481. CrossRefGoogle Scholar
  27. La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos A Appl Sci Manuf 42(6):579–588. CrossRefGoogle Scholar
  28. Lazim Y, Salit SM, Zainudin ES, Mustapha M, Jawaid M (2014) Effect of alkali treatment on the physical, mechanical, and morphological properties of waste betel nut (Areca catechu) husk fibre. BioResources 9(4):7721–7736. CrossRefGoogle Scholar
  29. Lu N, Oza S (2013) Thermal stability and thermo-mechanical properties of hemp-high density polyethylene composites: effect of two different chemical modifications. Compos B Eng 44(1):484–490. CrossRefGoogle Scholar
  30. Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025. CrossRefGoogle Scholar
  31. Mehta G, Drzal LT, Mohanty AK, Misra M (2006) Effect of fiber surface treatment on the properties of biocomposites from nonwoven industrial hemp fiber mats and unsaturated polyester resin. J Appl Polym Sci 99(3):1055–1068. CrossRefGoogle Scholar
  32. Militký J, Jabbar A (2015) Comparative evaluation of fiber treatments on the creep behavior of jute/green epoxy composites. Compos B Eng 80:361–368. CrossRefGoogle Scholar
  33. Mishra V, Biswas S (2013) Physical and mechanical properties of bi-directional jute fiber epoxy composites. Procedia Engineering 51:561–566. CrossRefGoogle Scholar
  34. Mohanty AK, Misra M (1995) Studies on jute composites—a literature review. Polym Plast Technol Eng 34(5):729–792. CrossRefGoogle Scholar
  35. Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84(12):2222–2234. CrossRefGoogle Scholar
  36. Mylsamy K, Rajendran I (2011) The mechanical properties, deformation and thermomechanical properties of alkali treated and untreated Agave continuous fibre reinforced epoxy composites. Mater Des 32(5):3076–3084. CrossRefGoogle Scholar
  37. Nitta Y, Goda K, Noda J, Lee W-I (2013) Cross-sectional area evaluation and tensile properties of alkali-treated kenaf fibres. Compos A Appl Sci Manuf 49:132–138. CrossRefGoogle Scholar
  38. Norul Izani MA, Paridah MT, Anwar UMK, Mohd Nor MY, H’ng PS (2013) Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers. Compos B Eng 45(1):1251–1257. CrossRefGoogle Scholar
  39. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C (2007) From glycerol to value-added products. Angew Chem Int Ed 46(24):4434–4440. CrossRefGoogle Scholar
  40. Parveen S, Rana S, Fangueiro R, Paiva MC (2017) A novel approach of developing micro crystalline cellulose reinforced cementitious composites with enhanced microstructure and mechanical performance. Cem Concr Compos 78:146–161. CrossRefGoogle Scholar
  41. Pichandi S, Rana S, Parveen S, Fangueiro R (2018) A green approach of improving interface and performance of plant fibre composites using microcrystalline cellulose. Carbohydr Polym 197:137–146. CrossRefPubMedGoogle Scholar
  42. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos A Appl Sci Manuf 83:98–112. CrossRefGoogle Scholar
  43. Saba N, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M (2017) Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 97:190–200. CrossRefPubMedGoogle Scholar
  44. Sanyang, M. L., Ilyas, R. A., Sapuan, S. M., & Jumaidin, R. (2018). Sugar palm starch-based composites for packaging applications. In: Bionanocomposites for packaging applications, pp 125–147. Google Scholar
  45. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. CrossRefGoogle Scholar
  46. Sood M, Dwivedi G (2018) Effect of fiber treatment on flexural properties of natural fiber reinforced composites: a review. Egypt J Pet 27(4):775–783. CrossRefGoogle Scholar
  47. Soutis C (2005) Fibre reinforced composites in aircraft construction. Prog Aerosp Sci 41(2):143–151. CrossRefGoogle Scholar
  48. Spanoudakis J, Young RJ (1984a) Crack propagation in a glass particle-filled epoxy resin. Part 1. Effect of particle volume fraction and size. J Mater Sci 19(2):473–486. CrossRefGoogle Scholar
  49. Spanoudakis J, Young RJ (1984b) Crack propagation in a glass particle-filled epoxy resin. Part 2. Effect of particle-matrix adhesion. Journal of Materials Science 19(2):487–496. CrossRefGoogle Scholar
  50. Sudheer M, Prabhu R, Raju K, Bhat T (2014) Effect of filler content on the performance of epoxy/PTW composites. In: Advances in materials science and engineering, pp 1–11. CrossRefGoogle Scholar
  51. Tao P, Zhang Y, Wu Z, Liao X, Nie S (2019) Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: transition of cellulose crystal structure. Carbohydr Polym 214:1–7. CrossRefGoogle Scholar
  52. Unterweger C, Brüggemann O, Fürst C (2014) Synthetic fibers and thermoplastic short-fiber-reinforced polymers: properties and characterization. Polym Compos 35(2):227–236. CrossRefGoogle Scholar
  53. Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, Herrera-Franco PJ (1999) Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos B Eng 30(3):309–320. CrossRefGoogle Scholar
  54. Viretto A, Galy J (2018) Development of biobased epoxy matrices for the preparation of green composite materials for civil engineering applications. Macromol Mater Eng 303(5):1700521. CrossRefGoogle Scholar
  55. Wetzel B, Rosso P, Haupert F, Friedrich K (2006) Epoxy nanocomposites—fracture and toughening mechanisms. Eng Fract Mech 73(16):2375–2398. CrossRefGoogle Scholar
  56. Yang H-S, Kim H-J, Son J, Park H-J, Lee B-J, Hwang T-S (2004) Rice-husk flour filled polypropylene composites; mechanical and morphological study. Compos Struct 63(3–4):305–312. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.National Centre of Composite Materials, Faculty of Engineering and TechnologyNational Textile UniversityFaisalabadPakistan

Personalised recommendations