Advertisement

Cellulose

pp 1–18 | Cite as

Sodium lignin sulfonate: a bio-macromolecule for making fire retardant cotton fabric

  • Akshay Shukla
  • Veerender Sharma
  • Santanu BasakEmail author
  • S. Wazed AliEmail author
Original Research
  • 34 Downloads

Abstract

Sodium lignin sulfonate (SLS) has been explored as a fire retardant finishing agent on cotton fabric. 30% [w/v] SLS treated cotton fabric has registered LOI value of 28.5 with minimum char length of 4 cm (self-extinguishment) whereas control cotton fabric was found to burn out with flame and afterglow within 1 min. Thermo-gravimetry of the treated cotton fabric showed 35% mass retention at 500 °C while only 8% char mass was left for the control cotton fabric at the said temperature. Volatile species liberated during burning were analyzed by GC–MS technique which demonstrated the restriction of flammable gas formation from the SLS treated fabric. Char mass left after burning also has been characterized in terms of its morphology, elemental analysis, etc. Moreover, it has also been proven that SLS treatment imparts a natural attractive yellow color, UV protective property to the treated fabric without altering physical strength of the fabric which can be considered as an added advantage over flame retardant effect.

Graphic abstract

Keywords

Cotton Sodium lignin sulfonate (SLS) Flammability Thermo-gravimetry Char UV resistance 

Notes

Acknowledgments

The authors are grateful to Technology Development and Transfer (TDT) Division, Department of Science and Technology, The Govt. of India for funding (File No. DST/TDT/SHRI-08/2018) this research work under ‘Science and Heritage Research Initiative (SHRI)’ Scheme.

References

  1. Alongi J, Carletto RA, Blasio AD, Cuttica F, Carosio F, Bosco F, Malucelli G (2013a) Intrinsic intumescent-like flame retardant properties of DNA-treated cotton fabrics. Carbohydr Polym 96:296–304CrossRefGoogle Scholar
  2. Alongi J, Carletto RA, Blasio AD, Carosio F, Bosco F, Malucelli G (2013b) DNA: a novel green natural flame retardant and suppressant for cotton. J Mater Chem A 1:4779–4785CrossRefGoogle Scholar
  3. Alongi J, Carletto RA, Bosco F, Carosio F, Blasio AD, Cuttica F, Antonucci V, Giordano M, Malucelli G (2013c) Caseins and hydrophobins as novel green flame retardant for cotton fabrics. Polym Degrad Stabil 99:111–117CrossRefGoogle Scholar
  4. Alongi J, Carletto RA, Bosco F, Carosio F, Blasio AD, Cuttica F, Antonucci V, Giordano M, Malucelli G (2014a) Caseins and hydrophobins as novel green flame retardants for cotton fabrics. Polym Degrad Stab 99:111–117CrossRefGoogle Scholar
  5. Alongi J, Cuttica F, Blasio AD, Carosio F, Malucelli G (2014b) Intumescent features of nucleic acids and proteins. Thermochim Acta 591:31–39CrossRefGoogle Scholar
  6. Alongi J, Blasio AD, Milnes J, Malucelli G (2015) Thermal degradation of DNA, an all in one natural intumescent flame retardant. Polym Degrad Stabil 113:110–118CrossRefGoogle Scholar
  7. Alongi J, Cuttica F, Carosio F (2016) DNA coatings from byproducts: a panacea for the flame retardancy of EVA, PP, ABS, PET and PA6. ACS Sustain Chem Eng 4(6):3544–3551CrossRefGoogle Scholar
  8. Angelini S, Barrio A, Cerruti P, Scarinze G, Jacca JG, Savy D, Piccolo A, Malinconico M (2019) Lignosulfonates as fire retardants in wood flour based particle boards. Int J Polym Sci.  https://doi.org/10.1155/2019/6178163 Google Scholar
  9. Azis MM, Rachmadi H, Wintoko J, Yulian AT, Hasokowatki W, Purwono S, Rochamandi W (2016) On the use of sodium lignosulfonate for enhanced oil recovery. IOP Conf Ser Earth Environ Sci 65:1–7Google Scholar
  10. Basak S, Ali SW (2016) Sustainable fire retardancy of textiles using bio-macromolecules. Polym Degrad Stab 133:47–64CrossRefGoogle Scholar
  11. Basak S, Ali SW (2017) Leveraging flame retardant efficacy of pomegranate rind extract, a novel biomolecule, on ligno-cellulosic materials. Polym Degrad Stab 144:83–92CrossRefGoogle Scholar
  12. Basak S, Ali SW (2018) Fire resistant behaviour of cellulosic textile functionalised with wastage plant bio-molecules: a comparative scientific report. Int J Biol Macromol 114:169–180CrossRefGoogle Scholar
  13. Basak S, Ali SW (2019) Wastage pomegranate rind extracts (PRE): a one step green solution for bioactive and naturally dyed cotton substrate with special emphasis on its fire protection efficacy. Cellulose 26:3601–3623CrossRefGoogle Scholar
  14. Basak S, Samanta KK, Chattopadhyay SK, Narkar R (2015) Self-extinguishable ligno-cellulosic fabric made by banana pseudostem sap. Curr Sci 108:372–383Google Scholar
  15. Basak S, Patil PG, Shaikh AJ, Samanta KK (2016) Green coconut shell extract and boric acid: new formulation for making thermally stable cellulosic paper. J Chem Technol Biotechnol 91:2871–2881CrossRefGoogle Scholar
  16. Basak S, Samanta KK, Chattopadhyay SK, Narkar R, Parmar MS (2017) Wastage spinach leaf: Source for making self-extinguishable cellulosic substrate. Ind J Fibre Text Res 42:215–222Google Scholar
  17. Bosco F, Carletto RA, Alongi J, Marmo L, Blasio AD, Malucelli G (2013) Thermal stability and flame resistance of cotton fabrics treated with whey proteins. Carbohydr Polym 94:372–377CrossRefGoogle Scholar
  18. Brebu M, Vasile C (2010) Thermal degradation of lignin: a review. Cell Chem Technol 44:353–363Google Scholar
  19. Cayla A, Rault F, Giraud S, Salaün F, Fierro V, Celzard A (2016) PLA with intumescent system containing lignin and ammonium polyphosphate for flame retardant textile. Polymers 8:331–339CrossRefGoogle Scholar
  20. Chirico AD, Armanini M, Chini P, Cioccolo G, Provasoli F, Audisio G (2003) Flame retardants for polypropylene based on lignin. Polym Degrad Stab 79:139–145CrossRefGoogle Scholar
  21. Costes L, Laoutid F, Brohez S, Delvosalle C, Dubois P (2017) Phytic acid–lignin combination: a simple and efficient route for enhancing thermal and flame retardant properties of polylactide. Eur. Polym. J. 94:270–285CrossRefGoogle Scholar
  22. Costes L, Aguedo M, Brison L, Brohez S, Richel A, Lautid F (2018) Lignin fractionation as an efficient route for enhancing polylactide thermal stability and flame retardancy. Flame Retard Therm Stab Mater 1:14–24CrossRefGoogle Scholar
  23. Ferry L, Dorez G, Taguet A, Otazaghine B, Lopez Cuesta JM (2015) Chemical modification of lignin by phosphorous molecules to improve the fire behavior of polybutylene succinate. Polym Degrad Stabil 113:135–143CrossRefGoogle Scholar
  24. Horrocks AR (1986) Flame-retardant finishing of textiles. Rev Prog Color Relat Top 16:62–101CrossRefGoogle Scholar
  25. Horrocks AR (2011) Flame retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym Degrad Stab 96:377–392CrossRefGoogle Scholar
  26. Horrocks AR (2013) Textile flammability research since 1980: personal challenges and partial solutions. Polym Degrad Stab 98:2813–2824CrossRefGoogle Scholar
  27. Hu J, Shen D, Wu S, Zhang H, Xiao R (2014) Effect of temperature on structure evolution in char from hydrothermal degradation of lignin. J Anal Appl Pyrolysis 106:118–124CrossRefGoogle Scholar
  28. Jakab E, Faix O, Till F, Szekely T (1993) The effect of cations on the thermal decomposition of lignins. J Anal Appl Pyrol 25:185–194CrossRefGoogle Scholar
  29. Kleen M, Gellerstedt G (1995) Influence of inorganic species on the formation of polysaccharide and lignin degradation products in the analytical pyrolysis of pulps. J Anal Appl Pyrol 35:15–41CrossRefGoogle Scholar
  30. Mendis GP, Weiss SG, Korey M, Boardman CR, Bietenberger M, Youngblood GP, Howarter JA (2016) Phosphorylated lignin as a halogen free flame retardant additive for epoxy composites. Green Mater 4(4):150–159CrossRefGoogle Scholar
  31. Morgan AB, Bundy M (2007) Cone calorimeter analysis of UL-94 V-rated plastics. Fire Mater 31:257–283CrossRefGoogle Scholar
  32. Nazare S, Kandola B, Horrocks R (2002) Use of cone calorimetry to quantify the burning hazard of apparel fabrics. Fire Mater 26:191–199CrossRefGoogle Scholar
  33. Northey RA (2002) The use of lignosulfonate as water reducing agent in the manufacture of gypsum wall board in chemical modification, properties and usage of lignin. In: Hu TQ (ed) Chemical modification, properties and usage of lignin. Kluwer Academic / Plenum Publishers, pp 139–150Google Scholar
  34. Ormeño E, Céspedes B, Sánchez IA, Velasco-García A, Moreno JM, Fernandez C, Baldy V (2009) The relationship between terpenes and flammability of leaf litter. For Ecol Manag 257:471–482CrossRefGoogle Scholar
  35. Pappa A, Mikedi K, Tzamtzis N, Statheropoulos M (2006) TG–MS analysis for studying the effects of fire retardants on the pyrolysis of pine-needles and their components. J Therm Anal Calorim 84:655–661CrossRefGoogle Scholar
  36. Parit M, Saha P, Davis VA, Jiang Z (2018) Transparent and homogeneous cellulose nanocrystal/lignin UV protective films. ACS Omega 3:10679–10691CrossRefGoogle Scholar
  37. Quian Y, Xueqing Q, Zhu S (2014) Lignin: a nature inspired sun blocker for broad spectrum sunscreens. Green Chem 17:35–41Google Scholar
  38. Réti C, Casetta M, Duquesne S, Bourbigot S, Delobel R (2008) Flammability properties of intumescent PLA including starch and lignin. Polym Adv Technol 19:628–635CrossRefGoogle Scholar
  39. Roberts DL, Hall ME, Horrocks AR (1992) Environmental aspects of flame-retardant textiles: an overview. Rev Prog Color Relat Top 22:48–57CrossRefGoogle Scholar
  40. Sadeghifar H, Venditti R, Jur J, Gorga RE, Pawlak JJ (2017) Cellulose lignin biodegradable and flexible UV protection film. ACS Sustain Chem Eng 5:625–631CrossRefGoogle Scholar
  41. Schartel B, Hull JR (2007) Development of fire retardant materials: interpretation of cone calorimeter data. Fire Mater 31:327–354CrossRefGoogle Scholar
  42. Schartel B, Bartholmai M, Knoll U (2005) Some comments on the use of cone calorimeter data. Polym Degrad Stabil 88:540–547CrossRefGoogle Scholar
  43. Seshama M, Khatri H, Suthar M, Basak S, Ali SW (2017) Bulk vs nano ZnO: influence of fire retardant behavior on sisal fibre yarn. Carbohydr Polym 175:257–264CrossRefGoogle Scholar
  44. Sharma V, Basak S, Rishabh K, Umaria H, Ali SW (2018) Synthesis of zinc carbonate nanoneedles, a potential flame retardant for cotton textiles. Cellulose.  https://doi.org/10.1007/s-10570-018-1962-5 Google Scholar
  45. Shen D, Ye J, Xiao R, Zhang H (2013) TG-MS analysis for thermal decomposition of cellulose under different atmospheres. Carbohydr Polym 98:514–521CrossRefGoogle Scholar
  46. Shukla S, Basak S, Ali SW, Chattopadhyay R (2016) Development of fire retardant sisal yarn. Cellulose 24:423–434CrossRefGoogle Scholar
  47. Weil ED, Levchik SV (2008) Flame retardants in commercial use or development for textiles. J Fire Sci 26:243–281CrossRefGoogle Scholar
  48. Zhang J, Fleeury E, Chen Y, Brook MA (2015) Flame retardant lignin based silicon composites. RSC Adv 126:365–373Google Scholar
  49. Zhu H, Peng Z, Chen Y, Li GG, Wang Tang Y, Pang R, Haq Khan ZU, Wan P (2014) Preparation and characterization of flame retardant polyurethane foams containing phosphorus–nitrogen-functionalized lignin. RSC Adv 4:55271–55279CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Textile TechnologyIndian Institute of Technology, DelhiHauz KhasIndia

Personalised recommendations