pp 1–15 | Cite as

Analytical ultracentrifugation and other techniques in studying highly disperse nano-crystalline cellulose hybrids

  • I. PerevyazkoEmail author
  • E. V. Lebedeva
  • M. P. Petrov
  • M. E. Mikhailova
  • N. G. Mikusheva
  • O. S. Vezo
  • M. A. Torlopov
  • I. S. Martakov
  • P. V. Krivoshapkin
  • N. V. TsvetkovEmail author
  • U. S. Schubert
Original Research


The development of functional nano-crystalline cellulose hybrid suspensions has been in the focus of many areas of industry and academia for the past decades. The attention is elucidated from a unique biocompatible, mechanical, solution etc. properties of cellulose based systems. Fabrication of functional cellulose hybrids with customized features requires detailed knowledge of their final properties as well as understanding the structure–property relationships between the initial ingredients. The reported study investigates the formation and corresponding fundamental solution and molecular characteristics of highly disperse nano-crystalline cellulose hybrids with aluminum oxide nanoparticles. The characterization of the final complexes and its primary components was performed mainly in solution, using basic complementary hydrodynamic approaches, substantially—sedimentation velocity analysis in the analytical ultracentrifuge and related techniques. The analysis of the solution behavior resolved information about the hydrodynamic size, molar mass, shape, asymmetry and composition of the complexes. Additionally morphology of the cellulose hybrids was investigated by scanning force microscopy. To this end we demonstrate complete structural examination of highly disperse colloidal suspensions of crystal nano-cellulose modified by aluminum nanoparticles using classical solution characterization techniques.

Graphic abstract


Cellulose Nano-cellulose crystals Analytical ultracentrifugation Solution properties Characterization 



I. Perevyazko, E. V. Lebedeva, M. P. Petrov, M. E. Mikhailova, N. G. Mikusheva, P. V. Krivoshapkin and N. V. Tsvetkov are grateful for the support by a grant from the Russian Science Foundation (Project №16-13-10148). U. S. Schubert gratefully acknowledges the Bundesministerium für Bildung und Forschung (BMBF, Germany, #031A518B Vectura). Some of the experiments were performed at the Center for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics of Research park of St. Petersburg State University.

Supplementary material

10570_2019_2577_MOESM1_ESM.docx (48 kb)
Supplementary material 1 (DOCX 47 kb)


  1. Abitbol T, Kam D, Levi-Kalisman Y, Gray DG, Shoseyov O (2018) Surface charge influence on the phase separation and viscosity of cellulose nanocrystals. Langmuir 34:3925–3933. CrossRefGoogle Scholar
  2. Brown PH, Schuck P (2006) Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation. Biophys J 90:4651–4661. CrossRefGoogle Scholar
  3. Brown PH, Balbo A, Zhao H, Ebel C, Schuck P (2011) Density contrast sedimentation velocity for the determination of protein partial-specific volumes. PLoS ONE 6:e26221. CrossRefGoogle Scholar
  4. Carrasco B et al (2001) Crystallohydrodynamics for solving the hydration problem for multi-domain proteins: open physiological conformations for human igg. Biophys Chem 93:181–196. CrossRefGoogle Scholar
  5. Chamsa-ard W, Brundavanam S, Fung CC, Fawcett D, Poinern G (2017) Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: a review. Nanomaterials 7:131. CrossRefGoogle Scholar
  6. Durchschlag H, Zipper P (2001) Comparative investigations of biopolymer hydration by physicochemical and modeling techniques. Biophys Chem 93:141–157. CrossRefGoogle Scholar
  7. Erickson HP (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online 11:32–51. CrossRefGoogle Scholar
  8. Ferreira FV, Pinheiro IF, Gouveia RF, Thim GP, Lona LMF (2018) Functionalized cellulose nanocrystals as reinforcement in biodegradable polymer nanocomposites. Polym Compos 39:E9–E29. CrossRefGoogle Scholar
  9. García de la Torre J (2001) Hydration from hydrodynamics. General considerations and applications of bead modelling to globular proteins. Biophys Chem 93:159–170. CrossRefGoogle Scholar
  10. George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54. CrossRefGoogle Scholar
  11. Gillis RB, Rowe AJ, Adams GG, Harding SE (2014) A review of modern approaches to the hydrodynamic characterisation of polydisperse macromolecular systems in biotechnology. Biotechnol Genet Eng Rev 30:142–157. CrossRefGoogle Scholar
  12. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542. CrossRefGoogle Scholar
  13. Harding SE (2001) The hydration problem in solution biophysics: an introduction. Biophys Chem 93:87–91. CrossRefGoogle Scholar
  14. Harding SE, Colfen H (1995) Inversion formulas for ellipsoid of revolution macromolecular shape functions. Anal Biochem 228:131–142. CrossRefGoogle Scholar
  15. Jarvis MC (2018) Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture. Philos Trans A Math Phys Eng Sci 376:13. CrossRefGoogle Scholar
  16. Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969. CrossRefGoogle Scholar
  17. Kratky O, Leopold H, Stabinger H (1973) The determination of the partial specific volume of proteins by the mechanical oscillator technique. Methods Enzymol 27:98–110CrossRefGoogle Scholar
  18. Lee YR et al (2017) Smart cellulose nanofluids produced by tunable hydrophobic association of polymer-grafted cellulose nanocrystals. ACS Appl Mater Interfaces 9:31095–31101. CrossRefGoogle Scholar
  19. Li S, Huang J (2016) Cellulose-rich nanofiber-based functional nanoarchitectures. Adv Mater 28:1143–1158. CrossRefGoogle Scholar
  20. Lopez CG, Colby RH, Graham P, Cabral JT (2017) Viscosity and scaling of semiflexible polyelectrolyte nacmc in aqueous salt solutions. Macromolecules 50:332–338. CrossRefGoogle Scholar
  21. Lu A, Hemraz U, Khalili Z, Boluk Y (2014) Unique viscoelastic behaviors of colloidal nanocrystalline cellulose aqueous suspensions. Cellulose 21:1239–1250. CrossRefGoogle Scholar
  22. Mao Y, Liu K, Zhan C, Geng L, Chu B, Hsiao BS (2017) Characterization of nanocellulose using small-angle neutron, X-ray, and dynamic light scattering techniques. J Phys Chem B 121:1340–1351. CrossRefGoogle Scholar
  23. Mohtaschemi M, Dimic-Misic K, Puisto A, Korhonen M, Maloney T, Paltakari J, Alava MJ (2014) Rheological characterization of fibrillated cellulose suspensions via bucket vane viscometer. Cellulose 21:1305–1312. CrossRefGoogle Scholar
  24. Moud AA, Arjmand M, Yan N, Nezhad AS, Hejazi SH (2018) Colloidal behavior of cellulose nanocrystals in presence of sodium chloride. Chemistryselect 3:4969–4978. CrossRefGoogle Scholar
  25. Nischang I, Perevyazko I, Majdanski T, Vitz J, Festag G, Schubert US (2017) Hydrodynamic analysis resolves the pharmaceutically-relevant absolute molar mass and solution properties of synthetic poly(ethylene glycol)s created by varying initiation sites. Anal Chem 89:1185–1193. CrossRefGoogle Scholar
  26. Ortega A, de la Torre JG (2003) Hydrodynamic properties of rodlike and disklike particles in dilute solution. J Chem Phys 119:9914–9919. CrossRefGoogle Scholar
  27. Pamies R, Cifre JGH, Martinez MDL, de la Torre JG (2008) Determination of intrinsic viscosities of macromolecules and nanoparticles. Comparison of single-point and dilution procedures. Colloid Polym Sci 286:1223–1231. CrossRefGoogle Scholar
  28. Pavlov GM, Perevyazko I, Schubert US (2010) Velocity sedimentation and intrinsic viscosity analysis of polystyrene standards with a wide range of molar masses. Macromol Chem Phys 211:1298–1310. CrossRefGoogle Scholar
  29. Pavlov GM, Perevyazko IY, Okatova OV, Schubert US (2011) Conformation parameters of linear macromolecules from velocity sedimentation and other hydrodynamic methods. Methods 54:124–135. CrossRefGoogle Scholar
  30. Perevyazko I, Vollrath A, Hornig S, Pavlov GM, Schubert US (2010) Characterization of poly(methyl methacrylate) nanoparticles prepared by nanoprecipitation using analytical ultracentrifugation, dynamic light scattering, and scanning electron microscopy. J Polym Sci Part A Polym Chem 48:3924–3931. CrossRefGoogle Scholar
  31. Perkins SJ (2001) X-ray and neutron scattering analyses of hydration shells: a molecular interpretation based on sequence predictions and modelling fits. Biophys Chem 93:129–139. CrossRefGoogle Scholar
  32. Planken KL, Colfen H (2010) Analytical ultracentrifugation of colloids. Nanoscale 2:1849–1869. CrossRefGoogle Scholar
  33. Potzinger Y, Rabel M, Ahrem H, Thamm J, Klemm D, Fischer D (2018) Polyelectrolyte layer assembly of bacterial nanocellulose whiskers with plasmid DNA as biocompatible non-viral gene delivery system. Cellulose 25:1939–1960. CrossRefGoogle Scholar
  34. Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78:1606–1619. CrossRefGoogle Scholar
  35. Schuck P, Rossmanith P (2000) Determination of the sedimentation coefficient distribution by least-squares boundary modeling. Biopolymers 54:328–341.;2-P CrossRefGoogle Scholar
  36. Scott D, Harding S, Rowe A (2005) Analytical ultracentrifugation: techniques and methods. The Royal Society of Chemistry, CambridgeGoogle Scholar
  37. Solomon O, Ciuta I (1962) Determination of the intrinsic viscosity of polymer solutions by a simple determination of viscosity. J Appl Polym Sci 6:683–686CrossRefGoogle Scholar
  38. Tanaka R, Kuribayashi T, Ogawa Y, Saito T, Isogai A, Nishiyama Y (2017) Ensemble evaluation of polydisperse nanocellulose dimensions: rheology, electron microscopy, X-ray scattering and turbidimetry. Cellulose 24:3231–3242. CrossRefGoogle Scholar
  39. Tanford C (1961) Physical chemistry of macromolecules. Wiley, New YorkGoogle Scholar
  40. Tardy BL, Yokota S, Ago M, Xiang WC, Kondo T, Bordes R, Rojas OJ (2017) Nanocellulose–surfactant interactions. Curr Opin Colloid Interface Sci 29:57–67. CrossRefGoogle Scholar
  41. Trache D, Hussin MH, Haafiz MK, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786. CrossRefGoogle Scholar
  42. Tsvetkov VN (1989) Rigid-chain polymers: hydrodynamic and optical properties in solution. Plenum Press, New YorkGoogle Scholar
  43. Tsvetkov VN, Eskin VE, Frenkel SY (1971) Structure of macromolecules in solution. National Lending Library for Science and Technology, BostonGoogle Scholar
  44. Tsvetkov NV et al (2016) Hydrodynamic and optical characteristics of hydrosols of cellulose nanocrystals. Colloid Polym Sci 295:13–24. CrossRefGoogle Scholar
  45. Wang S, Lu A, Zhang LN (2016) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206. CrossRefGoogle Scholar
  46. Weishaupt R, Siqueira G, Schubert M, Kampf MM, Zimmermann T, Maniura-Weber K, Faccio G (2017) A protein-nanocellulose paper for sensing copper ions at the nano- to micromolar level. Adv Funct Mater 27:10. Google Scholar
  47. Westley F, Cohen I (1966) Tables of values relating the axial ratio to the frictional ratio of an ellipsoid of revolution. Biopolymers 4:201–204. CrossRefGoogle Scholar
  48. Winzor DJ, Carrington LE, Harding SE (2001) Analysis of thermodynamic non-ideality in terms of protein solvation. Biophys Chem 93:231–240. CrossRefGoogle Scholar
  49. Xiong R et al (2016) Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity. Adv Mater 28:1501–1509. CrossRefGoogle Scholar
  50. Yang J, Li J (2018) Self-assembled cellulose materials for biomedicine: a review. Carbohydr Polym 181:264–274. CrossRefGoogle Scholar
  51. Yoldas BE (1975) Alumina sol preparation from alkoxides. Am Ceram Soc Bull 54:289–290Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Molecular Biophysics and Physics of PolymersSt. Petersburg State UniversitySt. PetersburgRussian Federation
  2. 2.Research ParkSt. Petersburg State UniversitySt. PetersburgRussian Federation
  3. 3.Ural Division, Institute of Chemistry, Komi Science CentreRussian Academy of SciencesSyktyvkarRussian Federation
  4. 4.Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaJenaGermany
  5. 5.Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaJenaGermany

Personalised recommendations