pp 1–12 | Cite as

Bacterial nanocellulose in papermaking

  • Matej SkočajEmail author
Review Paper


Bacterial nanocellulose (BNC) is a unique natural nanomaterial that shares very few similarities with other natural or industrially produced nanomaterials. BNC can be produced by a variety of bacteria, as a survival aid in different ecological niches. BNC is traditionally produced by static or shaking culture methods, and the ‘mother vinegar’, or biofilm, is a typical example of this product after static vinegar fermentation. BNC has great potential in biomedicine, and recent studies have also demonstrated its use in the papermaking industry. It has nanoscale fiber size and large numbers of free hydroxyl groups, which ensure high inter-fiber hydrogen bonding. Thus, BNC has great potential as a reinforcing material, and is especially applicable for recycled paper and for paper made of nonwoody cellulose fiber. As well as enhancing the strength and durability of paper, modified BNC shows great potential for production of fire resistant and specialized papers. However, the biotechnological aspects of BNC need to be improved to minimize the cost of its production, and to thus make this process economically feasible.

Graphic abstract


Bacterial nanocellulose Papermaking Pulp Paper 



Bacterial nanocellulose


Uridine diphosphate



The author gratefully acknowledges Dr. Christopher Berrie for editing of the manuscript, Dr. Kristina Sepčić and Gregor Lavrič for critical reading of the manuscript, and the Slovenian Research Agency for financial support (Grant P1-0207).


  1. Aitomäki Y, Oksman K (2014) Reinforcing efficiency of nanocellulose in polymers. React Funct Polym 85:151–156CrossRefGoogle Scholar
  2. Ashjaran A, Yazdanshenas ME, Rashidi A et al (2013) Overview of bio nanofabric from bacterial cellulose. J Text Inst 104:121–131CrossRefGoogle Scholar
  3. Balea A, Merayo N, Fuente E et al (2017) Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper. Cellulose 25:1339–1351CrossRefGoogle Scholar
  4. Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107CrossRefPubMedGoogle Scholar
  5. Blanco A, Miranda R, Monte MC (2013) Extending the limits of paper recycling: improvements along the paper value chain. For Syst 22:471–483Google Scholar
  6. Brown AJ (1886) XIX. The chemical action of pure cultivations of bacterium aceti. J Chem Soc Trans 49:172–187CrossRefGoogle Scholar
  7. Brown RM (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci Part Polym Chem 42:487–495CrossRefGoogle Scholar
  8. Brown RM, Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73:4565–4569CrossRefPubMedGoogle Scholar
  9. Campano C, Balea A, Blanco A, Negro C (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23:57–91CrossRefGoogle Scholar
  10. Campano C, Merayo N, Balea A et al (2018a) Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose 25:269–280CrossRefGoogle Scholar
  11. Campano C, Merayo N, Negro C, Blanco Á (2018b) Low-fibrillated bacterial cellulose nanofibers as a sustainable additive to enhance recycled paper quality. Int J Biol Macromol 114:1077–1083CrossRefPubMedGoogle Scholar
  12. Campano C, Merayo N, Negro C, Blanco A (2018c) In-situ production of bacterial cellulose to economically improve recycled paper properties. Int J Biol Macromol 118:1532–1541CrossRefPubMedGoogle Scholar
  13. Carreira P, Mendes JAS, Trovatti E et al (2011) Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresour Technol 102:7354–7360CrossRefPubMedGoogle Scholar
  14. Chang W-S, Chen H-H (2016) Physical properties of bacterial cellulose composites for wound dressings. Food Hydrocoll 53:75–83CrossRefGoogle Scholar
  15. Chao Y, Ishida T, Sugano Y, Shoda M (2000) Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Biotechnol Bioeng 68:345–352CrossRefPubMedGoogle Scholar
  16. Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124Google Scholar
  17. Cheng H-P, Wang P-M, Chen J-W, Wu W-T (2002) Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor. Biotechnol Appl Biochem 35:125–132CrossRefPubMedGoogle Scholar
  18. Dahman Y (2009) Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. J Nanosci Nanotechnol 9:5105–5122CrossRefPubMedGoogle Scholar
  19. Donini ÍAN, Salvi DTBD, Fukumoto FK et al (2010) Biossíntese e recentes avanços na produção de celulose bacteriana. Eclética Quím 35:165–178CrossRefGoogle Scholar
  20. Eichhorn SJ, Baillie CA, Zafeiropoulos N et al (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci 36:2107–2131CrossRefGoogle Scholar
  21. Eichhorn SJ, Dufresne A, Aranguren M et al (2009) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRefGoogle Scholar
  22. El-Saied H, El-Diwany AI, Basta AH et al (2008) Production and characterization of economical bacterial cellulose. BioResources 3:1196–1217Google Scholar
  23. Fang L, Catchmark JM (2014) Characterization of water-soluble exopolysaccharides from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly. Cellulose 21:3965–3978CrossRefGoogle Scholar
  24. Fillat A, Martínez J, Valls C et al (2018) Bacterial cellulose for increasing barrier properties of paper products. Cellulose 25:6093–6105CrossRefGoogle Scholar
  25. Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442CrossRefPubMedGoogle Scholar
  26. Gallegos AMA, Carrera SH, Parra R et al (2016) Bacterial cellulose: a sustainable source to develop value-added products—a review. BioResources 11:5641–5655CrossRefGoogle Scholar
  27. Gao W-H, Chen K-F, Yang R-D et al (2010) Properties of bacterial cellulose ad its influence on the physical properties of paper. BioResources 6:144–153Google Scholar
  28. Gatenholm P, Klemm D (2010) Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35:208–213CrossRefGoogle Scholar
  29. Goncalves M, Łaszkiewicz B (1999) Celuloza bakteryjna—biosynteza, właściwości i zastosowanie. Prz Pap R 55:657–661Google Scholar
  30. Hamada H, Beckvermit J, Bousfield D (2010) Nanofibrillated cellulose with fine clay as a coating agent to improve print quality. In: Paper conference and trade show, PaperCon, pp 854–880Google Scholar
  31. Hon DN-S (1994) Cellulose: a random walk along its historical path. Cellulose 1:1–25CrossRefGoogle Scholar
  32. Hong F, Zhu YX, Yang G, Yang XX (2011) Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose. J Chem Technol Biotechnol 86:675–680CrossRefGoogle Scholar
  33. Hornung M, Ludwig M, Schmauder HP (2007) Optimizing the production of bacterial cellulose in surface culture: a novel aerosol bioreactor working on a fed batch principle (part 3). Eng Life Sci 7:35–41CrossRefGoogle Scholar
  34. Huang Y, Zhu C, Yang J et al (2014) Recent advances in bacterial cellulose. Cellulose 21:1–30CrossRefGoogle Scholar
  35. Hubbe MA (2013) Prospects for maintaining strength of paper and paperboard products while using less forest resources: a review. BioResources 9:1634–1763CrossRefGoogle Scholar
  36. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270CrossRefGoogle Scholar
  37. Ishihara M, Matsunaga M, Hayashi N, Tišler V (2002) Utilization of d-xylose as carbon source for production of bacterial cellulose. Enzym Microb Technol 31:986–991CrossRefGoogle Scholar
  38. Jeon S, Yoo Y-M, Park J-W et al (2014) Electrical conductivity and optical transparency of bacterial cellulose based composite by static and agitated methods. Curr Appl Phys 14:1621–1624CrossRefGoogle Scholar
  39. Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106CrossRefGoogle Scholar
  40. Jozala AF, de Lencastre-Novaes LC, Lopes AM et al (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100:2063–2072CrossRefPubMedGoogle Scholar
  41. Jung JY, Khan T, Park JK, Chang HN (2007) Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean J Chem Eng 24:265–271CrossRefGoogle Scholar
  42. Karlovits I, Lavrič G (2018) The influence of nanocellulose addition on printing properties of recycled paper. In: Gane P (ed) Advances in printing and media technology: proceedings of the 45th international research conference of Iarigai, pp 49–54Google Scholar
  43. Kawano Y, Saotome T, Ochiai Y et al (2011) Cellulose accumulation and a cellulose synthase gene are responsible for cell aggregation in the cyanobacterium Thermosynechococcus vulcanus RKN. Plant Cell Physiol 52:957–966CrossRefPubMedGoogle Scholar
  44. Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4:1–10CrossRefGoogle Scholar
  45. Keshk SMAS, Sameshima K (2005) Evaluation of different carbon sources for bacterial cellulose production. Afr J Biotechnol 4:478–482Google Scholar
  46. Kim C-W, Kim D-S, Kang S-Y et al (2006) Structural studies of electrospun cellulose nanofibers. Polymer 14:5097–5107CrossRefGoogle Scholar
  47. Kim Y-J, Kim J-N, Wee Y-J et al (2007) Bacterial cellulose production by Gluconacetobacter sp. PKY5 in a rotary biofilm contactor. Appl Biochem Biotechnol 137:529–537PubMedGoogle Scholar
  48. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRefGoogle Scholar
  49. Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466CrossRefPubMedGoogle Scholar
  50. Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245–256CrossRefPubMedGoogle Scholar
  51. Kose R, Yamaguchi K, Okayama T (2016) Preparation of fine fiber sheets from recycled pulp fibers using aqueous counter collision. Cellulose 23:1393–1399CrossRefGoogle Scholar
  52. Kralisch D, Hessler N, Klemm D et al (2010) White biotechnology for cellulose manufacturing—the HoLiR concept. Biotechnol Bioeng 105:740–747PubMedGoogle Scholar
  53. Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76:333–335CrossRefGoogle Scholar
  54. Laftah WA, Rahman WAWA (2016) Pulping process and the potential of using nonwood pineapple leaves fiber for pulp and paper production: a review. J Nat Fibers 13:85–102CrossRefGoogle Scholar
  55. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764CrossRefPubMedGoogle Scholar
  56. Lavrič G (2016) Efficiency of fibrillation of cellulose fibres process by enzymes. MSc thesis, University of Ljubljana, Ljubljana, SloveniaGoogle Scholar
  57. Lee K-Y, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32CrossRefPubMedGoogle Scholar
  58. Legnani C, Vilani C, Calil VL et al (2008) Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517:1016–1020CrossRefGoogle Scholar
  59. Lim G-H, Lee J, Kwon N et al (2016) Fabrication of flexible magnetic papers based on bacterial cellulose and barium hexaferrite with improved mechanical properties. Electron Mater Lett 12:574–579CrossRefGoogle Scholar
  60. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRefGoogle Scholar
  61. Lin S-P, Loira Calvar I, Catchmark JM et al (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219CrossRefGoogle Scholar
  62. Luu WT, Bousfield D, Kettle J (2011) Application of nano-fibrillated cellulose as a paper surface treatment for inkjet printing. In: Paper conference and trade show, PaperCon, pp 1152–1163Google Scholar
  63. Masaoka S, Ohe T, Sakota N (1993) Production of cellulose from glucose by Acetobacter xylinum. J Ferment Bioeng 75:18–22CrossRefGoogle Scholar
  64. Matsuoka M, Tsuchida T, Matsushita K et al (1996) A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci Biotechnol Biochem 60:575–579CrossRefGoogle Scholar
  65. Medvešček S (2017) Influence of nanocrystallized cellulose on paper printability. MSc thesis, University of Ljubljana, Ljubljana, SloveniaGoogle Scholar
  66. Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:576–583CrossRefPubMedGoogle Scholar
  67. Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem 61:101–110CrossRefPubMedGoogle Scholar
  68. Morgan JLW, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–186CrossRefPubMedGoogle Scholar
  69. Mormino R, Bungay H (2003) Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Appl Microbiol Biotechnol 62:503–506CrossRefPubMedGoogle Scholar
  70. Nunes T, Lourenço AF, Gamelas JAF, Ferreira PJT (2015) Cellulose nanofibrils in papermaking—filler retention, wet web resistance and printability. In: Proceedings of the second international conference on natural fibers, pp 27–29Google Scholar
  71. Nygårds S (2011) Nanocellulose in pigment coatings—aspects of barrier properties and printability in offset. MSc thesis, Linköping University, Linköping, SwedenGoogle Scholar
  72. Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23:93–123CrossRefGoogle Scholar
  73. Poland CA, Duffin R, Kinloch I et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428CrossRefPubMedGoogle Scholar
  74. Presler S, Surma-Ślusarska B (2006) Modyfikacja roślinnych półproduktów papierniczych celulozą bakteryjną. Przem Chem T85(8–9):1297–1299Google Scholar
  75. Puceković N, Hooimeijer A, Lozo B (2015) Cellulose nanocrystals coating—a novel paper coating for use in the graphic industry. Acta Graph 26:21–26Google Scholar
  76. Putra A, Kakugo A, Furukawa H et al (2008) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer 49:1885–1891CrossRefGoogle Scholar
  77. Rajwade JM, Paknikar KM, Kumbhar JV (2015) Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 99:2491–2511CrossRefPubMedGoogle Scholar
  78. Retegi A, Gabilondo N, Peña C et al (2010) Bacterial cellulose films with controlled microstructure–mechanical property relationships. Cellulose 17:661–669CrossRefGoogle Scholar
  79. Römling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212CrossRefPubMedGoogle Scholar
  80. Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23:545–557CrossRefPubMedPubMedCentralGoogle Scholar
  81. Rosa JR, da Silva ISV, de Lima CSM et al (2014) New biphasic mono-component composite material obtained by partial oxypropylation of bacterial cellulose. Cellulose 21:1361–1368Google Scholar
  82. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58PubMedPubMedCentralGoogle Scholar
  83. Santos SM, Carbajo JM, Quintana E et al (2015) Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydr Polym 116:173–181CrossRefPubMedGoogle Scholar
  84. Santos SM, Carbajo JM, Gómez N et al (2016) Use of bacterial cellulose in degraded paper restoration. Part II: application on real samples. J Mater Sci 51:1553–1561CrossRefGoogle Scholar
  85. Santos SM, Carbajo JM, Gómez N et al (2017) Paper reinforcing by in situ growth of bacterial cellulose. J Mater Sci 52:5882–5893CrossRefGoogle Scholar
  86. Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129CrossRefPubMedGoogle Scholar
  87. Schrecker ST, Gostomski PA (2005) Determining the water holding capacity of microbial cellulose. Biotechnol Lett 27:1435–1438CrossRefPubMedGoogle Scholar
  88. Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58:756–760CrossRefPubMedGoogle Scholar
  89. Shah J, Brown RM (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66:352–355CrossRefPubMedGoogle Scholar
  90. Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598CrossRefPubMedGoogle Scholar
  91. Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8CrossRefGoogle Scholar
  92. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  93. Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78CrossRefPubMedGoogle Scholar
  94. Son H-J, Kim H-G, Kim K-K et al (2003) Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour Technol 86:215–219CrossRefPubMedGoogle Scholar
  95. Song H-J, Li H, Seo J-H et al (2009) Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korean J Chem Eng 26:141–146CrossRefGoogle Scholar
  96. Suwannapinunt N, Burakorn J, Thaenthanee S (2007) Effect of culture conditions on bacterial BC (BC) production from Acetobacter xylinum TISTR976 and physical properties of BC parchment paper. J Sci Technol 14:357–365Google Scholar
  97. Tabarsa T, Sheykhnazari S, Ashori A et al (2017) Preparation and characterization of reinforced papers using nano bacterial cellulose. Int J Biol Macromol 101:334–340CrossRefPubMedGoogle Scholar
  98. Tang W, Jia S, Jia Y, Yang H (2009) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26:125–131CrossRefGoogle Scholar
  99. Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crops Prod 35:92–97CrossRefGoogle Scholar
  100. Vitta S, Thiruvengadam V (2012) Multifunctional bacterial cellulose and nanoparticle-embedded composites. Curr Sci 102:1398–1405Google Scholar
  101. Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200CrossRefGoogle Scholar
  102. Whitney JC, Howell PL (2013) Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol 21:63–72CrossRefPubMedGoogle Scholar
  103. Williams WS, Cannon RE (1989) Alternative environmental roles for cellulose produced by Acetobacter xylinum. Appl Environ Microbiol 55:2448–2452PubMedPubMedCentralGoogle Scholar
  104. Wu J-M, Liu R-H (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 90:116–121CrossRefPubMedGoogle Scholar
  105. Wu R-Q, Li Z-X, Yang J-P et al (2010) Mutagenesis induced by high hydrostatic pressure treatment: a useful method to improve the bacterial cellulose yield of a Gluconoacetobacter xylinus strain. Cellulose 17:399–405CrossRefGoogle Scholar
  106. Xiang Z, Jin X, Liu Q et al (2017a) The reinforcement mechanism of bacterial cellulose on paper made from woody and nonwoody fiber sources. Cellulose 24:5147–5156CrossRefGoogle Scholar
  107. Xiang Z, Liu Q, Chen Y, Lu F (2017b) Effects of physical and chemical structures of bacterial cellulose on its enhancement to paper physical properties. Cellulose 24:3513–3523CrossRefGoogle Scholar
  108. Yamada Y, Yukphan P, Lan Vu HT et al (2012) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 58:397–404CrossRefPubMedGoogle Scholar
  109. Yang YK, Park SH, Hwang JW et al (1998) Cellulose production by Acetobacter xylinum BRC5 under agitated condition. J Ferment Bioeng 85:312–317CrossRefGoogle Scholar
  110. Yoshinaga F, Tonouchi N, Watanabe K (1997) Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci Biotechnol Biochem 61:219–224CrossRefGoogle Scholar
  111. Yousefi H, Faezipour M, Hedjazi S et al (2013) Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Ind Crops Prod 43:732–737CrossRefGoogle Scholar
  112. Yu X, Atalla RH (1996) Production of cellulose II by Acetobacter xylinum in the presence of 2,6-dichlorobenzonitrile. Int J Biol Macromol 19:145–146CrossRefPubMedGoogle Scholar
  113. Yuan J, Wang T, Huang X, Wei W (2016) Dispersion and beating of bacterial cellulose and their influence on paper properties. BioResources 11:9290–9301Google Scholar
  114. Zaar K (1979) Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J Cell Biol 80:773–777CrossRefPubMedGoogle Scholar
  115. Zhou LL, Sun DP, Hu LY et al (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34:483–489CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations