pp 1–13 | Cite as

Mechanical properties of cellulose nanofibril films: effects of crystallinity and its modification by treatment with liquid anhydrous ammonia

  • Vegar OttesenEmail author
  • Per Tomas Larsson
  • Gary Chinga-Carrasco
  • Kristin Syverud
  • Øyvind Weiby Gregersen
Original Research


The influence of cellulose crystallinity on mechanical properties of cellulose nano-fibrils (CNF) was investigated. Degree of crystallinity (DoC) was modified using liquid anhydrous ammonia. Such treatment changes crystal allomorph from cellulose I to cellulose III, a change which was reversed by subsequent boiling in water. DoC was measured using solid state nuclear magnetic resonance (NMR). Crystalline index (CI) was also measured using wide angle X-ray scattering (WAXS). Cotton linters were used as the raw material. The cotton linter was ammonia treated prior to fibrillation. Reduced DoC is seen to associate with an increased yield point and decreased Young modulus. Young modulus is here defined as the maximal slope of the stress–strain curves. The association between DoC and Young modulus or DoC and yield point are both statistically significant. We cannot conclude there has been an effect on strainability. While mechanical properties were affected, we found no indication that ammonia treatment affected degree of fibrillation. CNF was also studied in air and liquid using atomic force microscopy (AFM). Swelling of the nanofibers was observed, with a mean diameter increase of 48.9%.


Degree of crystallinity Mechanical properties Swelling Cellulose nanofibrils 



This work is performed as a part of the NORCEL Project: The NORwegian NanoCELlulose Technology Platform, initiated and led by The Paper and Fiber Research Institute (PFI) in Trondheim and funded by the Research Council of Norway through the NANO2021 Program (Grant 228147 Research Council of Norway). The Research Council of Norway is further acknowledged for the support to the Norwegian Micro- and Nano-Fabrication Facility, NorFab. Thanks are extended to CELSUR for providing cotton linters. Thanks are further extended to Jasna Stevanic Srndovic for assistance with NMR and WAXS measurements, Kelly McCammon-Ottesen for proof-reading.


  1. Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574. (ISSN: 0969-0239)Google Scholar
  2. Barry AJ, Peterson FC, King AJ (1936) X-ray studies of reactions of cellulose in non-aqueous systems. I. Interaction of cellulose and liquid ammonia 1. J Am Chem Soc 58(2):333–337. (ISSN: 002-7863)Google Scholar
  3. Brodin M et al (2017) Lignocellulosics as sustainable resources for production of bioplastics—a review. J Clean Prod 162:646–664. (ISSSN: 09596526)Google Scholar
  4. Chinga-Carrasco G et al (2008) New advances in the 3D characterization of mineral coating layers on paper. J Microsc 232(2):212–224. (ISSN: 00222720)Google Scholar
  5. Codou A et al (2015) Partial periodate oxidation and thermal cross-linking for the processing of thermoset all-cellulose composites. Compos Sci Technol 117:54–61. Google Scholar
  6. Dinand E et al (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I \(\rightarrow \) cellulose II. Cellulose 9(1):7–18. (ISSN: 09690239)Google Scholar
  7. Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter, Berlin. ISBN:978-3-11-025456-3Google Scholar
  8. Foster EJ et al (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679. Google Scholar
  9. Fukuzumi H et al (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165. (ISSN: 1525-7797)Google Scholar
  10. Ginestet C (2011) ggplot2: elegant graphics for data analysis. J R Stat Soc Ser A (Stat Soc) 174(1):245–246. (ISSN: 0006341X)Google Scholar
  11. Henriksson M (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585. (ISSN: 1525-7797)Google Scholar
  12. Hermann CKF (1997) The shrinking dollar bill. J Chem Educ 74(11):1357. (ISSN: 0021-9584)Google Scholar
  13. Hess K, Trogus C (1935) Über Ammoniak-Cellulose (Vorläuf. Mitteil.). Berichte der Dtsch Chem Gesellschaft (A B Ser) 68(10):1986–1988. (ISSN: 03659488)Google Scholar
  14. Hult EL, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer (Guildf) 42(8):3309–3314. (ISSN: 00323861)Google Scholar
  15. Kono H, Numata Y (2004) Two-dimensional spin-exchange solid-state NMR study of the crystal structure of cellulose II. Polymer (Guildf) 45(13):4541–4547. (ISSN: 00323861)Google Scholar
  16. Kroon-Batenburg LMJ, Bouma B, Kroon J (1996) Stability of cellulose structures studied by MD simulations. Could mercerized cellulose II be parallel? Macromolecules 29(17):5695–5699. (ISSN: 0024-9297)Google Scholar
  17. Kumar Kumar et al (2016) Influence of nanolatex addition on cellulose nanofiber film properties. Nord Pulp Pap Res J 31(02):333–340. (ISSN: 0283-2631)Google Scholar
  18. Larsson PA, Wågberg L (2016) Towards natural-fibre-based thermoplastic films produced by conventional papermaking. Green Chem 18(11):3324–3333. (ISSN: 1526-4602)Google Scholar
  19. Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302(1–2):19–25. (ISSN: 00086215)Google Scholar
  20. Larsson PA, Berglund LA, Wågberg L (2014) Ductile all-cellulose nanocomposite films fabricated from core-shell structured cellulose nanofibrils. Biomacromolecules 15(6):2218–23. Google Scholar
  21. Lavoine N et al (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–64. (ISSN: 1879-1344)Google Scholar
  22. Menachem L, Roldan LG (1971) The effect of liquid anhydrous ammonia in the structure and morphology of cotton cellulose. J Polym Sci Part C Polym Symp 229(36):213–229Google Scholar
  23. Minelli M et al (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Memb Sci 358(1–2):67–75. (ISSN: 03767388)Google Scholar
  24. Mittal A et al (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4(41):1–16. (ISSN: 1754-6834)Google Scholar
  25. Myllytie P et al (2010) Viscoelasticity and water plasticization of polymer-cellulose composite films and paper sheets. Cellulose 17(2):375–385. (ISSN: 09690239)Google Scholar
  26. Nečas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Open Phys 10(1):181–188. (ISSN: 2391-5471)Google Scholar
  27. Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37(20):7683–7687. (ISSN: 00249297)Google Scholar
  28. Nocanda X et al (2007) Cross polarisation/magic angle spinning 13C-NMR spectroscopic studies of cellulose structural changes in hardwood dissolving pulp process. Holzforschung 61(6):675–679. (ISSN: 1437434X)Google Scholar
  29. Nogi M et al (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598. (ISSN: 09359648)Google Scholar
  30. Okano T, Sarko A (1985) Mercerization of celluloseII. Alkali–cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30(1):325–332. (ISSN: 00218995)Google Scholar
  31. Park SJ et al (2003) Effect of dry heat and hot water processings on cellulose III crystallite of cotton and lyocell fibers treated with liquid ammonia. Sen’i Gakkaishi 58(8):299–303. (ISSN: 0037-9875)Google Scholar
  32. Peciulyte A et al (2015) Impact of the supramolecular structure of cellulose on the efficiency of enzymatic hydrolysis. Biotechnol Biofuels 8(56):1–13. (ISSN: 1754-6834)Google Scholar
  33. Perez S, Mazeau K (2005) Conformations, structures, and morphologies of celluloses. Polysacch Struct Divers Funct Versatility. Google Scholar
  34. R Core Team (2015) R: a language and environment for statistical computing.
  35. Rodionova G et al (2012) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and eucalyptus pulps. Cellulose 19(3):705–711. (ISSN: 0969-0239)Google Scholar
  36. Rousselle MA et al (1976) Liquid-ammonia and caustic mercerization of cotton fibers: changes in fine structure and mechanical properties. Text Res J 46(4):304–310. (ISSN: 00405175)Google Scholar
  37. Saapan A, Kandil SH, Habib AM (1984) Liquid ammonia and caustic mercerization of cotton fibers using X-ray, infrared, and sorption measurements. Text Res J 54(12):863–867. (ISSN: 0040-5175)Google Scholar
  38. Sawada D et al (2014) The initial structure of cellulose during ammonia pretreatment. Cellulose 21(3):1117–1126. (ISSN: 0969-0239)Google Scholar
  39. Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–82. (ISSN: 1548-7105)Google Scholar
  40. Segal L et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. (ISSN: 0040-5175)Google Scholar
  41. Stone JE, Scallan AM (1968) A structural model for the cell wall of water swollen wood fibres based on their accessibility to macromolecules. Cellul Chem Technol 2:343–358Google Scholar
  42. Šturcova A et al (2004) Structural details of crystallinecellulose from higher plants. Biomacromolecules 5:1333–1339. (ISSN: 15257797)Google Scholar
  43. Syverud K, Stenius P (2008) Strength and barrier properties of MFC films. Cellulose 16(1):75–85. (ISSN: 0969-0239)Google Scholar
  44. Thao Ho TT et al (2013) Liquid ammonia treatment of (cationic) nanofibrillated cellulose/vermiculite composites. J Polym Sci Part B Polym Phys 51(8):638–648. (ISSN: 08876266)Google Scholar
  45. Wada M, Nishiyama Y, Langan P (2006) X-ray structure of ammonia-cellulose I: new insights into the conversion of cellulose I to cellulose III I. Macromolecules 39(8):2947–2952. (ISSN: 0024-9297)Google Scholar
  46. Wang J et al (2012) Real-time observation of the swelling and hydrolysis of a single crystalline cellulose fiber catalyzed by cellulase 7B from Trichoderma reesei. Langmuir 28(25):9664–9672. (ISSN: 07437463)Google Scholar
  47. Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312(3):123–129. (ISSN: 00086215)Google Scholar
  48. Youssefian S, Rahbar N (2015) Molecular origin of strength and stiffness in bamboo fibrils. Sci Rep 5:1–13. (ISSN: 20452322)Google Scholar
  49. Youssefian S, Jakes JE, Rahbar N (2017) Variation of nanostructures, molecular interactions, and anisotropic elastic moduli of lignocellulosic cell walls with moisture. Sci Rep 7(1):1–10. (ISSN: 20452322)Google Scholar
  50. Zugenmaier P (2008) Crystalline cellulose and cellulose derivatives. Springer, Berlin. (e-)ISBN:978-3-540-73934-0Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNTNUTrondheimNorway
  2. 2.RISE BioeconomyStockholmSweden
  3. 3.KTH Royal Institute of TechnologyStockholmSweden
  4. 4.RISE PFITrondheimNorway
  5. 5.Faculty of Natural SciencesNTNUTrondheimNorway

Personalised recommendations