Advertisement

Cellulose

pp 1–11 | Cite as

Multi-functional effect of alkenyl-succinic-anhydride-modified microfibrillated celluloses as reinforcement and a dispersant of CaCO3 in high-density polyethylene

  • Akihiro SatoEmail author
  • Tomoaki Yoshimura
  • Daisuke Kabusaki
  • Hiroaki Okumura
  • Yoko Homma
  • Fumiaki Nakatsubo
  • Hiroyuki Yano
Original Research
  • 23 Downloads

Abstract

The use of a combination of calcium carbonate (CaCO3) and alkenyl-succinic-anhydride (ASA)-modified microfibrillated cellulose (AMFC) as a filler for high-density polyethylene (HDPE) has been investigated. AMFC and CaCO3 were mixed with HDPE using a twin-screw extruder, and the resulting composites were injection molded. Observations by X-ray computed tomography, phase-contrast microscopy, and energy dispersive X-ray spectrometry confirm that AMFC is homogenously dispersed in HDPE as a result of the alkenyl chains being incorporated on the surface of the microfibrillated cellulose. CaCO3 is also well dispersed in HDPE when mixed with AMFC. The combination of CaCO3 and AMFC results in high mechanical reinforcement of HDPE, and the composite has a tensile modulus that is almost 120% higher than that of neat HDPE. A melt rheological study revealed formation of a network consisting of AMFC and CaCO3 in HDPE. Microfibrillated cellulose treated with ASA acts not only as reinforcement for HDPE, but also as a dispersant of inorganic fillers, such as CaCO3.

Keywords

Nanocomposites Cellulose nanofibers Mechanical properties Surface modification High-density polyethylene 

Notes

Acknowledgments

We thank Ms. Osawa for her assistance with X-ray tomography analysis. This study was supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan (Green Sustainable Chemical Process program P09010).

References

  1. Cao Z, Daly M, Clemence L, Geever LM, Major I, Higginbotham CL, Devine DM (2016) Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods. Appl Surf Sci 378:320–329CrossRefGoogle Scholar
  2. Chafidz A, Ali I, Ali Mohsin ME, Elleithy R, Al-Zahrani S (2012) Atomic force microscopy, thermal, viscoelastic and mechanical properties of HDPE/CaCO3 nanocomposites. J Polym Res 19:9860CrossRefGoogle Scholar
  3. Dang X, Cao X, Ke L, Ma Y, An J, Wang F (2017) Combination of cellulose nanofibers and chain-end-functionalized polyethylene and their applications in nanocomposites. J Appl Polym Sci 134:45387CrossRefGoogle Scholar
  4. de Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563CrossRefGoogle Scholar
  5. Durmus A, Kasgoz A, Macosko CW (2007) Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: structural characterization and quantifying clay dispersion by melt rheology. Polymer 48:4492–4502CrossRefGoogle Scholar
  6. Huang P, Zhao Y, Kuga S, Wu M, Huang Y (2016) A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale 8:3753–3759CrossRefGoogle Scholar
  7. Igarashi Y, Sato A, Okumura H, Nakatsubo F, Yano H (2018) Manufacturing process centered on dry-pulp direct kneading method opens a door for commercialization of cellulose nanofiber reinforced composites. Chem Eng J 354(15):563–568CrossRefGoogle Scholar
  8. Iwamoto S, Yamamoto S, Lee SH, Endo T (2014) Mechanical properties of polypropylene composites reinforced by surface-coated microfibrillated cellulose. Composites A 59:26–29CrossRefGoogle Scholar
  9. Lazzeri A, Zebarjad SM, Pracella M, Cavalier K, Rosa R (2005) Filler toughening of plastics. Part1-The effect of surface interactions on physico-mechanical properties and rheological behaviour of ultrafine CaCO3/HDPE nanocomposites. Polymer 46:827–844CrossRefGoogle Scholar
  10. Lee SH, Teramoto Y, Endo T (2011) Cellulose nanofiber-reinforced polycaprolactone/polypropylene hybrid nanocomposite. Compos A 42:151–156CrossRefGoogle Scholar
  11. Lepetit A, Drolet R, Tolnai B, Montplaisir D, Zerrouki R (2017a) Alkylation of microfibrillated cellulose—a green and efficient method for use in fiber-reinforced composites. Polymer 126:48–55CrossRefGoogle Scholar
  12. Lepetit A, Drolet R, Tolnai B, Zerrouki R, Montplaisir D (2017b) Effect of acetylation on the properties of microfibrillated cellulose-LDPE composites. J Appl Polym Sci 134(32):44933CrossRefGoogle Scholar
  13. Lepetit A, Drolet R, Tolnai B, Montplaisir D, Lucas R, Zerrouki R (2017c) Microfibrillated cellulose with sizing for reinforcing composites with LDPE. Cellulose 24(10):4303–4312CrossRefGoogle Scholar
  14. Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromol 6(5):2732–2739CrossRefGoogle Scholar
  15. Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262CrossRefGoogle Scholar
  16. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  17. Nagalakshmaiah M, Pignon F, Kissi NE, Dufresne A (2016a) Surface adsorption of triblock copolymer (PEO-PPO-PEO) on cellulose nanocrystals and their melt extrusion with polyethylene. RSC Adv 6:66224–66232CrossRefGoogle Scholar
  18. Nagalakshmaiah M, Kissi NE, Dufresne A (2016b) Ionic compatibilization of cellulose nanocrystals with quaternary ammonium salt and their melt extrusion with polypropylene. ACS Appl Mater Interfaces 8:8755–8764CrossRefGoogle Scholar
  19. Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Part B Polym Phys 33(11):1647–1651CrossRefGoogle Scholar
  20. Pöllänen M, Suvanto M, Pakkanen TT (2013) Cellulose reinforced high density polyethylene composites—morphology, mechanical and thermal expansion properties. Compos Sci Technol 76:21–28CrossRefGoogle Scholar
  21. Qiu W, Zhang F, Endo T, Hirotsu T (2005) Effect of maleated polypropylene on the performance of polypropylene/cellulose composite. Polym Compos 26(4):448–453CrossRefGoogle Scholar
  22. Sahebian S, Zebarjad SM, Sajjadi SA, Sherafat Z, Lazzeri A (2007) Effect of both uncoated and coated calcium carbonate on fracture toughness of HDPE/CaCO3 nanocomposites. J Appl Polym Sci 104:3688–3694CrossRefGoogle Scholar
  23. Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2012) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromol 14(1):248–253CrossRefGoogle Scholar
  24. Sakakibara K, Yano H, Tsujii Y (2016) Surface engineering of cellulose nanofiber by adsorption of diblock copolymer dispersant for green nanocomposite materials. ACS Appl Mater Interfaces 8:24893–24900CrossRefGoogle Scholar
  25. Sakakibara K, Moriki Y, Yano H, Tsujii Y (2017) Strategy for the improvement of the mechanical properties of cellulose nanofiber-reinforced high-density polyethylene nanocomposites using diblock copolymer dispersants. ACS Appl Mater Interfaces 9:44079–44087CrossRefGoogle Scholar
  26. Salleh FM, Hassan A, Yahya R, Azzahari AD (2014) Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites. Compos B 58:259–266CrossRefGoogle Scholar
  27. Sato A, Kabusaki D, Okumura H, Nakatani T, Nakatsubo F, Yano H (2016) Surface modification of cellulose nanofibers with alkenyl succinic anhydride for high-density polyethylene reinforcement. Compos A 83:72–79CrossRefGoogle Scholar
  28. Suzuki K, Okumura H, Kitagawa K, Sato S, Nakagaito AN, Yano H (2013) Development of continuous process enabling nanofibrillation of pulp and melt compounding. Cellulose 20:201–210CrossRefGoogle Scholar
  29. Valentino O, Sarno M, Rainone NG, Nobile MR, Ciambelli P, Neitzert HC, Simon GP (2008) Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites. Phys E 40:2440–2445CrossRefGoogle Scholar
  30. Volk N, He R, Magniez K (2015) Enhanced homogeneity and interfacial compatibility in melt-extruded cellulose nano-fibers reinforced polyethylene via surface adsorption of poly(ethylene glycol)-block-poly(ethylene) amphiphiles. Eur Polym J 72:270–281CrossRefGoogle Scholar
  31. Yano H, Omura H, Honma Y, Okumura H, Sano H, Nakatsubo F (2018) Designing cellulose nanofiber surface for high density polyethylene reinforcement. Cellulose 25(6):3351–3362CrossRefGoogle Scholar
  32. Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Akihiro Sato
    • 1
    Email author
  • Tomoaki Yoshimura
    • 1
  • Daisuke Kabusaki
    • 2
  • Hiroaki Okumura
    • 2
  • Yoko Homma
    • 2
  • Fumiaki Nakatsubo
    • 2
  • Hiroyuki Yano
    • 2
  1. 1.Technology DivisionSEIKO PMC CorporationChibaJapan
  2. 2.Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan

Personalised recommendations