Advertisement

Cellulose

, Volume 26, Issue 10, pp 6035–6047 | Cite as

Biomass-derived porous ZrTiO4 nanotubes with controlled wall-thickness for enhanced photocatalytic activity

  • Jingwen Chen
  • Chujun Hou
  • Yakang Zhang
  • Song Xu
  • Chao Yao
  • Man ZhouEmail author
  • Zhongyu LiEmail author
Original Research
  • 23 Downloads

Abstract

We present a novel and facile fabrication of wall-thickness controlled ZrTiO4 nanotubes (ZTNTs) using bacterial cellulose (BC) as a template. Unique porous thin-walls and interconnected channels within ZTNTs contribute a lot to the enhanced photodegradation activity. The roles of the wall-thicknesses in physicochemical properties as well as photocatalytic activities were careful investigated which might extend the synthesis of other nanotubes with higher catalytic performance.

Keywords

ZrTiO4 Porous nanotubes Biomass template Interconnected channels Photocatalysis 

Notes

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (21805015), Natural Science Foundation of Jiangsu Province (BK20180962), and Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (17KJB150001).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10570_2019_2521_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1990 kb)

References

  1. Albu SP, Ghicov A, Macak JM, Schmuki P (2007) 250 µm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys Status Solidi RRL 1:65–67.  https://doi.org/10.1002/pssr.200600069 CrossRefGoogle Scholar
  2. Camposeco R, Castillo S, Navarrete J, Gomez R (2016) Synthesis, characterization and photocatalytic activity of TiO2 nanostructures: nanotubes, nanofibers, nanowires and nanoparticles. Catal Today 266:90–101.  https://doi.org/10.1016/j.cattod.2015.09.018 CrossRefGoogle Scholar
  3. Demircivi P, Simsek EB (2019) Visible-light-enhanced photoactivity of perovskite-type W-doped BaTiO3 photocatalyst for photodegradation of tetracycline. J Alloy Compd 774:795–802.  https://doi.org/10.1016/j.jallcom.2018.09.354 CrossRefGoogle Scholar
  4. Dondiv M, Matteucci F, Cruciani G (2006) Zirconium titanate ceramic pigments: crystal structure, optical spectroscopy and technological properties. J Solid State Chem 179:233–246.  https://doi.org/10.1016/j.jssc.2005.10.032 CrossRefGoogle Scholar
  5. Hahn R, Macak JM, Schmuki P (2007) Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes. Electrochem Commun 9:947–952.  https://doi.org/10.1016/j.elecom.2006.11.037 CrossRefGoogle Scholar
  6. Hao XD, Wang J, Ding B, Wang Y, Chang Z, Dou H, Zhang XG (2017) Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors. J Power Sources 325:34–41.  https://doi.org/10.1016/j.jpowsour.2017.03.088 CrossRefGoogle Scholar
  7. Höche T, Patzig C, Gemming T, Wurth R, Rüssel C, Avramov I (2012) Temporal evolution of diffusion barriers surrounding ZrTiO4 nuclei in lithia aluminosilicate glass-ceramics. Cryst Growth Des 12:1556–1563.  https://doi.org/10.1021/cg.2016148 CrossRefGoogle Scholar
  8. Hoyer P (1996) Formation of a titanium dioxide nanotube array. Langmuir 12:1411–1413.  https://doi.org/10.1021/la9507803 CrossRefGoogle Scholar
  9. Huang Y, Zheng MB, Lin ZX, Zhao B, Zhang ST, Yang JZ, Zhu CL, Zhang H, Sun DP, Shi Y (2015) Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for highperformance lithium-sulfur batteries. J Mater Chem A 3:10910–10918.  https://doi.org/10.1039/c5ta01515d CrossRefGoogle Scholar
  10. Huang Y, Shen X, Qiao HX, Yang H, Zhang XJ, Liu YY, Yang HJ (2018) Biofunctional Sr- and Si-loaded titania nanotube coating of Ti surfaces by anodization-hydrothermal process. Int J Nanomed 13:633–640.  https://doi.org/10.2147/IJN.S147969 CrossRefGoogle Scholar
  11. Huerta-Flores AM, Torres-Martínez LM, Moctezuma E (2017) Overall photocatalytic water splitting on Na2ZrxTi6−xO13 (x = 0, 1) nanobelts modified with metal oxide nanoparticles as cocatalysts. Int J Hydrogen Energy 42:14547–14559.  https://doi.org/10.1016/j.ijhydene.2017.04.203 CrossRefGoogle Scholar
  12. Kim YK, Jang HM (2003) Raman line-shape analysis of nano-structural evolution in cation-ordered ZrTiO4-based dielectrics. Solid State Commun 127:433.  https://doi.org/10.1016/S0038-1098(03)00463-0 CrossRefGoogle Scholar
  13. Li SH, Huang DK, Zhang BY, Xu XB, Wang MK, Yang G, Shen Y (2014) Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv Energy Mater 1:1301655–1301662.  https://doi.org/10.1002/aenm.201301655 CrossRefGoogle Scholar
  14. Li YJ, Liu Y, Wang M, Xu XT, Lu T, Sun CQ, Pan LK (2018) Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization. Carbon 130:377–383.  https://doi.org/10.1016/j.carbon.2018.01.035 CrossRefGoogle Scholar
  15. Liu G, Lu HF, Chen ZG, Li F, Lian LZ, Watts J, Lu GQ, Cheng HM (2009) Ti–Zr–O nanotube arrays with controlled morphology, crystal structure and optical properties. J Nanosci Nanotechnol 9:6501–6510.  https://doi.org/10.1166/jnn.2009.1317 CrossRefGoogle Scholar
  16. Liu Y, Lu T, Sun Z, Chua DHC, Pan LK (2015) Ultra-thin carbon nanofiber networks derived from bacterial cellulose for capacitive deionization. J Mater Chem A 3:8693–8700.  https://doi.org/10.1039/c5ta00435g CrossRefGoogle Scholar
  17. Liu X, Sun J, Duan SX, Wang YN, Hayat T, Alsaedi A, Wang CM, Li JX (2017) A valuable biochar from poplar catkins with high adsorption capacity for both organic pollutants and inorganic heavy metal ions. Sci Rep 7:10033.  https://doi.org/10.1038/s41598-017-09446-0 CrossRefGoogle Scholar
  18. Liu G, Ma L, Yin LC, Wan GD, Zhu HZ, Zhen C, Yang YQ, Liang Y, Tan J, Cheng HM (2018) Selective chemical epitaxial growth of TiO2 islands on ferroelectric PbTiO3 crystals to boost photocatalytic activity. Joule 2:1095–1107.  https://doi.org/10.1016/j.joule.2018.03.006 CrossRefGoogle Scholar
  19. Macak JM, Sirotna K, Schmuki P (2005) Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim Acta 50:3679–3684.  https://doi.org/10.1016/j.electacta.2005.01.014 CrossRefGoogle Scholar
  20. Minagar S, Berndt CC, Gengenbach T, Wen C (2014) Fabrication and characterization of TiO2–ZrO2–ZrTiO4 nanotubes on TiZr alloy manufactured via anodization. J Mater Chem B 2:71–83.  https://doi.org/10.1039/C3TB21204A CrossRefGoogle Scholar
  21. Minagar S, Li YC, Berndt CC, Wen C (2015a) The influence of titania-zirconia-zirconium titanate nanotube characteristics on osteoblast cell adhesion. Acta Biomater 12:281–289.  https://doi.org/10.1016/j.actbio.2014.10.037 CrossRefGoogle Scholar
  22. Minagar S, Li YC, Berndt CC, Wen C (2015b) Cell response and bioactivity of titania–zirconia–zirconium titanate nanotubes with different nanoscale topographies fabricated in a non-aqueous electrolyte. Biomater Sci 3:636–644.  https://doi.org/10.1039/C5BM00007F CrossRefGoogle Scholar
  23. Murphy CJ, Gole AM, Hunyadi SE, Orendorff CJ (2006) One-dimensional coloidal gold and silver nanostructures. Inorg Chem 45:7544–7554.  https://doi.org/10.1002/chin.200648228 CrossRefGoogle Scholar
  24. Okamoto Y, Isobe T, Senna M (1995) Mechanochemical synthesis of non-crystalline ZrTiO4 precursor from inhomogeneous mixed gels. J Noncryst Solids 180:171–179.  https://doi.org/10.1016/0022-3093(94)00487-0 CrossRefGoogle Scholar
  25. Piskunov S, Lisovski O, Begens J, Bocharv D, Zhukovskii YF, Wessel M, Spohr E (2015) C-, N-, S-, and Fe-doped TiO2 and SrTiO3 nanotubes for visible-light-driven photocatalytic water splitting: prediction from first principles. J Phys Chem C 119:18686–18696.  https://doi.org/10.1021/acs.jpcc.5b03691 CrossRefGoogle Scholar
  26. Polliotto V, Albanese E, Livraghi S, Pacchioni G, Giamello E (2017a) The photoactive nitrogen impurity in nitrogendoped zirconium titanate (N–ZrTiO4): a combined electron paramagnetic resonance and density functional theory study. J Mater Chem A 5:13062–13071.  https://doi.org/10.1039/c7ta03047a CrossRefGoogle Scholar
  27. Polliotto V, Albanese E, Livraghi S, Indyka P, Sojka Z, Pacchioni G, Giamello E (2017b) Fifty-fifty Zr–Ti Solid solution with a TiO2-type structure: electronic structure and photochemical properties of zirconium titanate ZrTiO4. J Phys Chem C 121:5487–5497.  https://doi.org/10.1021/acs.jpcc.6b12892 CrossRefGoogle Scholar
  28. Polliotto V, Livraghi S, Krukowska A, Dozzi AMV, Medynska AZ, Selli E, Giamello E (2018) Copper-modified TiO2 and ZrTiO4: Cu oxidation state evolution during photocatalytic hydrogen production. ACS Appl Mater Interfaces 10:27745–27756.  https://doi.org/10.1021/acsami.8b05528 CrossRefGoogle Scholar
  29. Prasatkhetragarn A, Yimnirun R, Ananta S (2007) Effect of calcination condition on phase formation of zirconium titanate powders synthesized by the solid-state reaction. Ferroelectrics 356:203–208.  https://doi.org/10.1080/00150190701512367 CrossRefGoogle Scholar
  30. Qiu K, Netravali AN (2014) A review of fabrication and applications of bacterial cellulose based nanocomposites. Polym Rev 54:598–626.  https://doi.org/10.1080/15583724.2014.896018 CrossRefGoogle Scholar
  31. Rouhani P, Salahinejad E, Kaul R, Vashaee D, Tayebi L (2013) Nanostructured zirconium titanate fibers prepared by particulate sol–gel and cellulose templating techniques. J Alloy Compd 568:102–105.  https://doi.org/10.1016/j.jallcom.2013.03.142 CrossRefGoogle Scholar
  32. Suzuki S, Matsumoto H, Iwase A, Kudo A (2018) Enhanced H2 evolution over an Ir-doped SrTiO3 photocatalyst by loading of an Ir cocatalyst using visible light up to 800 nm. Chem Commun 54:10606–10609.  https://doi.org/10.1039/C8CC05344H CrossRefGoogle Scholar
  33. Wang DA, Yu B, Wang CW, Zhou F, Liu WM (2009) A novel protocol toward perfect alignment of anodized TiO2 nanotubes. Adv Mater 21:1964–1967.  https://doi.org/10.1002/adma.200801996 CrossRefGoogle Scholar
  34. Wang B, Li XL, Luo B, Yang JX, Wang XJ, Song Q, Chen SY, Zhi LJ (2013) Pyrolyzed bacterial cellulose: a versatile support for lithium ion battery anode materials. Small 9:2399–2404.  https://doi.org/10.1002/smll.201300692 CrossRefGoogle Scholar
  35. Xia YN, Yang PD, Sun Y, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389.  https://doi.org/10.1002/adma.200390087 CrossRefGoogle Scholar
  36. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155.  https://doi.org/10.1002/adma.200400597 CrossRefGoogle Scholar
  37. Yasuda K, Schmuki P (2007a) Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochim Acta 52:4053–4061.  https://doi.org/10.1016/j.electacta.2006.11.023 CrossRefGoogle Scholar
  38. Yasuda K, Schmuki P (2007b) Formation of self-organized zirconium titanate nanotube layers by alloy anodization. Adv Mater 19:1757–1760.  https://doi.org/10.1002/adma.200601912 CrossRefGoogle Scholar
  39. Yasuda K, Schmuki P (2007c) Electrochemical formation of self-organized zirconium titanate nanotube multilayers. Electrochem Commun 9:615–619.  https://doi.org/10.1016/j.elecom.2006 CrossRefGoogle Scholar
  40. Ye SJ, Zeng GM, Wu HP, Zhang C, Liang J, Dai J, Liu ZF, Xiong WP, Wan J, Xu P, Cheng M (2017) Co-occurrence and interactions of pollutants, and their impacts on soil remediation—a review. Crit Rev Env Sci Technol 47:1528–1553.  https://doi.org/10.1080/10643389.2017.1386951 CrossRefGoogle Scholar
  41. Yu JG, Yu HG (2006) Facile synthesis and characterization of novel nanocomposites of titanate nanotubes and rutile nanocrystals. Mater Chem Phys 100:507–512.  https://doi.org/10.1016/j.matchemphys.2006.02.002 CrossRefGoogle Scholar
  42. Zeng ZT, Ye SJ, Wu HP, Xiao R, Zeng GM, Liang J, Zhang C, Yu JF, Fang YF, Song B (2019) Research on the sustainable efficacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution. Sci Total Environ 648:206–217.  https://doi.org/10.1016/j.scitotenv.2018.08.108 CrossRefGoogle Scholar
  43. Zhang JQ, Li L, Zhang JJ, Zhang XY, Zhang WZ (2017) Controllable design of natural gully-like TiO2–ZrO2 composites and their photocatalytic degradation and hydrogen production by water splitting. New J Chem 41:9113–9122.  https://doi.org/10.1039/C7NJ00511C CrossRefGoogle Scholar
  44. Zhang Y, Nie JT, Wang Q, Zhang XW, Wang Q, Cong YQ (2018) Synthesis of Co3O4/Ag/TiO2 nanotubes arrays via photo-deposition of Ag and modification of Co3O4(311) for enhancement of visible-light photoelectrochemical performance. Appl Surf Sci 427:1009–1018.  https://doi.org/10.1016/j.apsusc.2017.09.008 CrossRefGoogle Scholar
  45. Zhao ZQ, Willard EJ, Li H, Wu ZK, Castro RHR, Osterloh FE (2018) Aluminum enhances photochemical charge separation in strontium titanate nanocrystal photocatalysts for overall water splitting. J Mater Chem A 6:16170–16176.  https://doi.org/10.1039/C8TA05885G CrossRefGoogle Scholar
  46. Zheleznov V, Voit E, Sushkov Y, Sarin S, Kuryavyi V, Opra D, Gnedenkov S, Sinebryukhov S, Sokolov A (2016) Nanostructured microtubes based on TiO2 doped by Zr and Hf oxides with the anatase structure. IOP Conf Mater Sci Eng 112:12016.  https://doi.org/10.1088/1757-899X/112/1/012016 CrossRefGoogle Scholar
  47. Zhou M, Lin M, Wang YZ, Guo XF, Guo XK, Peng LM, Ding WP (2015) Organic-free synthesis of ultrathin gold nanowires as effective SERS substrates. Chem Commun 51:11841–11843.  https://doi.org/10.1039/c5cc03974f CrossRefGoogle Scholar
  48. Zhou M, Chen JW, Hou CJ, Liu YJ, Xu S, Yao C, Li ZY (2019) Organic-free synthesis of porous CdS sheets with controlled windows size on bacterial cellulose for photocatalytic degradation and H2 production. Appl Surf Sci 470:908–916.  https://doi.org/10.1016/j.apsusc.2018.11.207 CrossRefGoogle Scholar
  49. Zhu YF, Zhang L, Natsuki T, Fu YQ, Ni QQ (2012) Facile synthesis of BaTiO3 nanotubes and their microwave absorption properties. ACS Appl Mater Interfaces 4:2101–2106.  https://doi.org/10.1021/am300069x CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical EngineeringChangzhou UniversityChangzhouChina
  2. 2.Advanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou UniversityChangzhouChina
  3. 3.School of Environmental and Safety EngineeringChangzhou UniversityChangzhouChina

Personalised recommendations