Advertisement

Cellulose

, Volume 26, Issue 10, pp 6087–6098 | Cite as

Facile preparation of high dielectric flexible films based on titanium dioxide and cellulose nanofibrils

  • Jie Tao
  • Shun-an CaoEmail author
  • Wei Liu
  • Yulin DengEmail author
Original Research
  • 71 Downloads

Abstract

A series of high dielectric composite films based on low-cost and eco-friendly titanium dioxide (TiO2) and cellulose nanofibril (CNF) was prepared under a facile condition. The relative dielectric constants (εr) and dielectric loss (\( \tan\updelta \)) were studied as the function of frequency and filler content. The εr of CNF/TiO2 composite film was 19.51 (at 1 kHz) with a relatively low dielectric loss. Compared with pure CNF films (εr = 6.92 at 1 kHz), the εr of the composite film was improved about three times with the dielectric loss increased slightly. The effects of TiO2 addition and hot-press treatment on microstructure, thermal stability, and dynamic mechanical properties of the composite films were also analyzed. It was found that the addition of TiO2 particles reduces the cellulose–cellulose bonding so generates more pores in the films, which has significant impacts on both dielectric and physical strength properties.

Graphical abstract

Keywords

Film capacitor Cellulose nanofibril High dielectric Titanium dioxide 

Notes

References

  1. Abdel-karim AM, Salama AH, Hassan ML (2018) Electrical conductivity and dielectric properties of nanofibrillated cellulose thin films from bagasse. J Phys Org Chem 31(9):e3851.  https://doi.org/10.1002/poc.3851 Google Scholar
  2. Al-Saygh A, Ponnamma D, AlMaadeed M, Vijayan P, Karim A, Hassan M (2017) Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide–titania hybrid nanolayers. Polymers 9(2):33.  https://doi.org/10.3390/polym9020033 Google Scholar
  3. Alam MM, Ghosh SK, Sarkar D, Sen S, Mandal D (2017) Improved dielectric constant and breakdown strength of gamma-phase dominant super toughened polyvinylidene fluoride/TiO2 nanocomposite film: an excellent material for energy storage applications and piezoelectric throughput. Nanotechnology 28(1):015503.  https://doi.org/10.1088/0957-4484/28/1/015503 Google Scholar
  4. Anju V, Narayanankutty SK (2016) Polyaniline coated cellulose fiber/polyvinyl alcohol composites with high dielectric permittivity and low percolation threshold. AIP Adv 6(1):015109Google Scholar
  5. Bonardd S, Robles E, Barandiaran I, Saldias C, Leiva A, Kortaberria G (2018) Biocomposites with increased dielectric constant based on Chitosan and nitrile-modified cellulose nanocrystals. Carbohydr Polym 199:20–30.  https://doi.org/10.1016/j.carbpol.2018.06.088 Google Scholar
  6. Chang CJ, Tsai MH, Chen GS, Wu MS, Hung TW (2009) Preparation and properties of porous polyimide films with TiO2/polymer double shell hollow spheres. Thin Solid Films 517(17):4966–4969.  https://doi.org/10.1016/j.tsf.2009.03.201 Google Scholar
  7. Chenampulli S, Unnikrishnan G, Thomas S, Narine SS (2019) Novel ethylene diamine functionalised nanocellulose/poly(ethylene-co-acrylic acid) composites for biomedical applications. Cellulose 26(3):1795–1809.  https://doi.org/10.1007/s10570-018-02227-6 Google Scholar
  8. Chiang C, Popielarz R (2002) Polymer composites with high dielectric constant. Ferroelectrics 275(1):1–9Google Scholar
  9. Dang Z-M (2018) 1—Introduction. In: Dang Z-M (ed) Dielectric polymer materials for high-density energy storage. William Andrew Publishing, Oxford, pp 1–9.  https://doi.org/10.1016/B978-0-12-813215-9.00001-4 Google Scholar
  10. Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Sadasivuni KK, Ponnamma D, AlMaadeed MA (2017) Striking multiple synergies in novel three-phase fluoropolymer nanocomposites by combining titanium dioxide and graphene oxide as hybrid fillers. J Mater Sci: Mater Electron 28(1):559–575.  https://doi.org/10.1007/s10854-016-5559-1 Google Scholar
  11. Dou Z, Liu W, Lin T, Zhou K, Hang L (2017) High performance capacitors via aligned TiO2 nanowire array. Appl Phys Lett.  https://doi.org/10.1063/1.4979407 Google Scholar
  12. Du X, Zhang Z, Liu W, Deng Y (2017) Nanocellulose-based conductive materials and their emerging applications in energy devices—a review. Nano Energy 35:299–320.  https://doi.org/10.1016/j.nanoen.2017.04.001 Google Scholar
  13. Emmert S, Wolf M, Gulich R, Krohns S, Kastner S, Lunkenheimer P, Loidl A (2011) Electrode polarization effects in broadband dielectric spectroscopy. Eur Phys J B 83(2):157–165.  https://doi.org/10.1140/epjb/e2011-20439-8 Google Scholar
  14. Feng Y, Yin JH, Chen MH, Song MX, Su B, Lei QQ (2013) Effect of nano-TiO2 on the polarization process of polyimide/TiO2 composites. Mater Lett 96:113–116.  https://doi.org/10.1016/j.matlet.2013.01.037 Google Scholar
  15. Feng Y, Yin JH, Chen MH, Liu XX, Su B, Fei WD, Lei QQ (2014) Influence of interface on the electrical properties of polyimide/TiO2 composite films. IEEE Trans Dielectr Electr Insul 21(4):1501–1508.  https://doi.org/10.1109/Tdei.2014.004322 Google Scholar
  16. Fujisaki Y et al (2014) Transparent nanopaper-based flexible organic thin-film transistor array. Adv Funct Mater 24(12):1657–1663.  https://doi.org/10.1002/adfm.201303024 Google Scholar
  17. Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95(9):1502–1508.  https://doi.org/10.1016/j.polymdegradstab.2010.06.015 Google Scholar
  18. Gan WC, Abd Majid WH (2014) Effect of TiO2 on enhanced pyroelectric activity of PVDF composite. Smart Mater Struct.  https://doi.org/10.1088/0964-1726/23/4/045026 Google Scholar
  19. Gaspar D et al (2014) Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology 25(9):094008.  https://doi.org/10.1088/0957-4484/25/9/094008 Google Scholar
  20. Hassan ML, Ali AF, Salama AH, Abdel-Karim AM (2019) Novel cellulose nanofibers/barium titanate nanoparticles nanocomposites and their electrical properties. J Phys Org Chem 32(2):e3897Google Scholar
  21. Inui T, Koga H, Nogi M, Komoda N, Suganuma K (2014) High-dielectric paper composite consisting of cellulose nanofiber and silver nanowire. In: 14th IEEE international conference on nanotechnology, pp 470–473Google Scholar
  22. Inui T, Koga H, Nogi M, Komoda N, Suganuma K (2015) A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite. Adv Mater 27(6):1112–1116.  https://doi.org/10.1002/adma.201404555 Google Scholar
  23. Ishmael SA et al (2014) Thermal conductivity and dielectric properties of a TiO2-based electrical insulator for use with high temperature superconductor-based magnets. Supercond Sci Technol 27(9):9.  https://doi.org/10.1088/0953-2048/27/9/095018 Google Scholar
  24. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85.  https://doi.org/10.1039/c0nr00583e Google Scholar
  25. Jayaramudu T, Ko H-U, Kim H, Kim J, Muthoka R, Kim J (2018a) Electroactive hydrogels made with polyvinyl alcohol/cellulose nanocrystals. Materials 11(9):1615Google Scholar
  26. Jayaramudu T, Ko HU, Kim HC, Kim JW, Muthoka RM, Kim J (2018b) Electroactive hydrogels made with polyvinyl alcohol/cellulose nanocrystals. Materials 11(9):11.  https://doi.org/10.3390/ma11091615 Google Scholar
  27. Ji S et al (2017) High dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructures. Adv Mater 29(24):1700538.  https://doi.org/10.1002/adma.201700538 Google Scholar
  28. Kafy A, Sadasivuni KK, Akther A, Min S-K, Kim J (2015a) Cellulose/graphene nanocomposite as multifunctional electronic and solvent sensor material. Mater Lett 159:20–23Google Scholar
  29. Kafy A, Sadasivuni KK, Kim HC, Akther A, Kim J (2015b) Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites. Phys Chem Chem Phys 17(8):5923–5931.  https://doi.org/10.1039/c4cp05921b Google Scholar
  30. Kizilkaya C, Dumludag F, Karatas S, Apohan NK, Altindal A, Gungor A (2012) The effect of titania content on the physical properties of polyimide/titania nanohybrid films. J Appl Polym Sci 125(5):3802–3810.  https://doi.org/10.1002/app.35292 Google Scholar
  31. Koytepe S, Seckin T, Kivrilcim N, Adiguzel HI (2008) Synthesis and dielectric properties of polyimide–titania hybrid composites. J Inorg Organomet Polym Mater 18(2):222–228.  https://doi.org/10.1007/s10904-007-9169-5 Google Scholar
  32. Kumar V et al (2014) Comparison of nano- and microfibrillated cellulose films. Cellulose 21(5):3443–3456.  https://doi.org/10.1007/s10570-014-0357-5 Google Scholar
  33. Kumari A, Ghosh BD (2018) La doped barium titanate/polyimide nanocomposites: a study of the effect of La doping and investigation on thermal, mechanical and high dielectric properties. J Appl Polym Sci 135(47):12.  https://doi.org/10.1002/app.46826 Google Scholar
  34. Lay M, Meng S, Ramli MR, Ahmad Z, Ismail H, Huat TS, Todo M (2018) Interphase volume calculation of polyimide/TiO2 nanofibers nanocomposite based on dielectric constant model and its effect on glass transition. J Mater Sci: Mater Electron 29(24):20742–20749.  https://doi.org/10.1007/s10854-018-0215-6 Google Scholar
  35. Le Bras D, Stromme M, Mihranyan A (2015) Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications. J Phys Chem B 119(18):5911–5917.  https://doi.org/10.1021/acs.jpcb.5b00715 Google Scholar
  36. Lee WH, Wang CC (2010) Effect of nanocomposite gate-dielectric properties on pentacene microstructure and field-effect transistor characteristics. J Nanosci Nanotechnol 10(2):762–769.  https://doi.org/10.1166/jnn.2010.1817 Google Scholar
  37. Lee WH, Wang CC, Ho JC (2009) Improved performance of pentacene field-effect transistors using a nanocomposite gate dielectric. J Vac Sci Technol, B 27(2):601–605.  https://doi.org/10.1116/1.3093881 Google Scholar
  38. Lee WH, Liu CT, Lee YC (2012) Study on preparation of high-k organic-inorganic thin film for organic-inorganic thin film transistor gate dielectric application. Jpn J Appl Phys 51(6):7.  https://doi.org/10.1143/jjap.51.061603 Google Scholar
  39. Lin JQ, Wang Y, Yang WL, Lu HW (2017) Balance of mechanical and electrical performance in polyimide/nano titanium dioxide prepared by an in-sol method. J Appl Polym Sci 134(13):9.  https://doi.org/10.1002/App.44666 Google Scholar
  40. Lizundia E et al (2016) Cu-coated cellulose nanopaper for green and low-cost electronics. Cellulose 23(3):1997–2010Google Scholar
  41. Lu HB, Zhang XY (2006) Influence of the relaxation of Maxwell–Wagner–Sillars polarization and dc conductivity on the dielectric behaviors of nylon 1010. J Appl Phys 100(5):054104.  https://doi.org/10.1063/1.2336494 Google Scholar
  42. Lu HW, Lin JQ, Yang WL, Liu LZ, Wang Y, Chen GR, Huang W (2017) Effect of nano-TiO2 surface modification on polarization characteristics and corona aging performance of polyimide nano-composites. J Appl Polym Sci 134(29):9.  https://doi.org/10.1002/app.45101 Google Scholar
  43. Madusanka N, Shivareddy SG, Hiralal P, Eddleston MD, Choi Y, Oliver RA, Amaratunga GA (2016) Nanocomposites of TiO2/cyanoethylated cellulose with ultra high dielectric constants. Nanotechnology 27(19):195402Google Scholar
  44. Madusanka N, Shivareddy SG, Eddleston MD, Hiralal P, Oliver RA, Amaratunga GA (2017) Dielectric behaviour of montmorillonite/cyanoethylated cellulose nanocomposites. Carbohydr Polym 172:315–321Google Scholar
  45. Meena JS et al (2012) Facile synthetic route to implement a fully bendable organic metal–insulator–semiconductor device on polyimide sheet. Org Electron 13(5):721–732.  https://doi.org/10.1016/j.orgel.2012.01.007 Google Scholar
  46. Milinskii AY, Baryshnikov SV, Thuong NH (2018) Dielectric properties of nanocomposites based on potassium iodate with porous nanocrystalline cellulose. Ferroelectrics 524(1):181–188.  https://doi.org/10.1080/00150193.2018.1432830 Google Scholar
  47. Milovidova SD, Rogazinskaya OV, Sidorkin AS, Thuong NH, Grohotova EV, Popravko NG (2014) Dielectric properties of composites based on nanocrystalline cellulose and triglycine sulfate. Ferroelectrics 469(1):116–119.  https://doi.org/10.1080/00150193.2014.949132 Google Scholar
  48. Mohiuddin M, Sadasivuni KK, Mun S, Kim J (2015) Flexible cellulose acetate/graphene blueprints for vibrotactile actuator. RSC Adv 5(43):34432–34438Google Scholar
  49. Novac OC, Maries GRE, Chira D, Novac M (2017) Study concerning the influence of the grinding percentage on some electrical properties of PA 6.6, POM and ABS by methods for determining relative permittivity and the dielectric dissipation factor. Mater Plast 54(3):453–460Google Scholar
  50. Olariu MA, Hamciuc C, Okrasa L, Hamciuc E, Dimitrov L, Kalvachev Y (2017) Electrical properties of polyimide composite films containing TiO2 Nanotubes. Polym Compos 38(11):2584–2593.  https://doi.org/10.1002/pc.23851 Google Scholar
  51. Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23(1):93–123.  https://doi.org/10.1007/s10570-015-0798-5 Google Scholar
  52. Paniagua SA, Kim Y, Henry K, Kumar R, Perry JW, Marder SR (2014) Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors. ACS Appl Mater Interfaces 6(5):3477–3482.  https://doi.org/10.1021/am4056276 Google Scholar
  53. Park HH, Choi Y, Park DJ, Cho SY, Yun YS, Jin HJ (2013) Enhanced dielectric properties of electrospun titanium dioxide/polyvinylidene fluoride nanofibrous composites. Fibers Polym 14(9):1521–1525.  https://doi.org/10.1007/s12221-013-1521-5 Google Scholar
  54. Postek MT, Moon RJ, Rudie AW, Bilodeau MA (2013) Production and applications of cellulose. Tappi Press, Peachtree CornersGoogle Scholar
  55. Poyraz B (2018) Enzyme treated CNF biofilms: characterization. Int J Biol Macromol 117:713–720.  https://doi.org/10.1016/j.ijbiomac.2018.05.222 Google Scholar
  56. Poyraz B, Tozluoğlu A, Candan Z, Demir A (2017a) Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites. J Polym Eng 37(9):921–931.  https://doi.org/10.1515/polyeng-2017-0022 Google Scholar
  57. Poyraz B, Tozluoglu A, Candan Z, Demir A, Yavuz M (2017b) Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of Celluclast-treated nanofibrillated cellulose composites. Int J Biol Macromol 104(Pt A):384–392.  https://doi.org/10.1016/j.ijbiomac.2017.06.018 Google Scholar
  58. Prabakaran K, Mohanty S, Nayak SK (2014) Influence of surface modified TiO2 nanoparticles on dielectric properties of PVdF–HFP nanocomposites. J Mater Sci: Mater Electron 25(10):4590–4602.  https://doi.org/10.1007/s10854-014-2209-3 Google Scholar
  59. Qi FW, Chen N, Wang Q (2017) Preparation of PA11/BaTiO3 nanocomposite powders with improved processability, dielectric and piezoelectric properties for use in selective laser sintering. Mater Design 131:135–143.  https://doi.org/10.1016/j.matdes.2017.06.012 Google Scholar
  60. Qi FW, Chen N, Wang Q (2018) Dielectric and piezoelectric properties in selective laser sintered polyamide11/BaTiO3/CNT ternary nanocomposites. Mater Design 143:72–80.  https://doi.org/10.1016/j.matdes.2018.01.050 Google Scholar
  61. Raghunathan SP, Narayanan S, Poulose AC, Joseph R (2017) Flexible regenerated cellulose/polypyrrole composite films with enhanced dielectric properties. Carbohydr Polym 157:1024–1032Google Scholar
  62. Rajala S et al (2016) Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl Mater Interfaces 8(24):15607–15614.  https://doi.org/10.1021/acsami.6b03597 Google Scholar
  63. Rekik H, Ghallabi Z, Royaud I, Arous M, Seytre G, Boiteux G, Kallel A (2013) Dielectric relaxation behaviour in semi-crystalline polyvinylidene fluoride (PVDF)/TiO2 nanocomposites. Compos Part B Eng 45(1):1199–1206.  https://doi.org/10.1016/j.compositesb.2012.08.002 Google Scholar
  64. Ribeiro C et al (2018) Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat Protoc 13(4):681–704.  https://doi.org/10.1038/nprot.2017.157 Google Scholar
  65. Sacui IA et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6(9):6127–6138.  https://doi.org/10.1021/am500359f Google Scholar
  66. Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using tempo catalyst under neutral conditions. Biomacromolecules 10(7):1992–1996.  https://doi.org/10.1021/bm900414t Google Scholar
  67. Samet M, Levchenko V, Boiteux G, Seytre G, Kallel A, Serghei A (2015) Electrode polarization vs. Maxwell–Wagner–Sillars interfacial polarization in dielectric spectra of materials: characteristic frequencies and scaling laws. J Chem Phys 142(19):194703.  https://doi.org/10.1063/1.4919877 Google Scholar
  68. Shi L et al (2018) Dielectric gels with ultra-high dielectric constant, low elastic modulus, and excellent transparency. NPG Asia Mater 10(8):821Google Scholar
  69. Shimizu M, Saito T, Isogai A (2016) Water-resistant and high oxygen-barrier nanocellulose films with interfibrillar cross-linkages formed through multivalent metal ions. J Membr Sci 500:1–7.  https://doi.org/10.1016/j.memsci.2015.11.002 Google Scholar
  70. Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48(24):11211–11219.  https://doi.org/10.1021/ie9011672 Google Scholar
  71. Su R et al (2016) High energy density performance of polymer nanocomposites induced by designed formation of BaTiO3@sheet-IikeTiO2 hybrid nanofillers. J Phys Chem C 120(22):11769–11776.  https://doi.org/10.1021/acs.jpcc.6b01853 Google Scholar
  72. Tanaka T (2005) Dielectric nanocomposites with insulating properties. IEEE Trans Dielectr Electr Insul 12(5):914–928.  https://doi.org/10.1109/TDEI.2005.1522186 Google Scholar
  73. Tanaka T, Kozako M, Fuse N, Ohki Y (2005) Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 12(4):669–681.  https://doi.org/10.1109/TDEI.2005.1511092 Google Scholar
  74. Tang R, Liggat JJ, Siew WH (2018) Filler and additive effects on partial discharge degradation of PET films used in PV devices. Polym Degrad Stab 150:148–157.  https://doi.org/10.1016/j.polymdegradstab.2018.02.003 Google Scholar
  75. Thomas S, Deepu VN, Mohanan P, Sebastian MT (2008) Effect of filler content on the dielectric properties of PTFE/ZnAl2O4-TiO2 composites. J Am Ceram Soc 91(6):1971–1975.  https://doi.org/10.1111/j.1551-2916.2008.02365.x Google Scholar
  76. Topala I, Dumitrascu N, Pohoata V (2007) Influence of plasma treatments on the hemocompatibility of PET and PET + TiO2 films. Plasma Chem Plasma Process 27(1):95–112.  https://doi.org/10.1007/s11090-006-9046-y Google Scholar
  77. Wang D, Dang Z-M (2018) Processing of polymeric dielectrics for high energy density capacitors. In: Dielectric polymer materials for high-density energy storage. Elsevier, Amsterdam, pp 429-446Google Scholar
  78. Wang SF, Wang YR, Cheng KC, Chen SH (2010a) Physical and electrical properties of polyimide/ceramic hybrid films prepared via non-hydrolytic sol–gel process. J Mater Sci: Mater Electron 21(1):104–110.  https://doi.org/10.1007/s10854-009-9876-5 Google Scholar
  79. Wang Y, Zhou X, Chen Q, Chu BJ, Zhang QM (2010b) Recent development of high energy density polymers for dielectric capacitors. IEEE Trans Dielectr Electr Insul 17(4):1036–1042.  https://doi.org/10.1109/Tdei.2010.5539672 Google Scholar
  80. Wang JC, Long YC, Sun Y, Zhang XQ, Yang H, Lin BP (2018) Fabrication and enhanced dielectric properties of polyimide matrix composites with core-shell structured CaCu3Ti4O12@TiO2 nanofibers. J Mater Sci: Mater Electron 29(9):7842–7850.  https://doi.org/10.1007/s10854-018-8783-z Google Scholar
  81. Wu GL, Li JL, Wang KK, Wang YQ, Pan C, Feng AL (2017) In situ synthesis and preparation of TiO2/polyimide composite containing phenolphthalein functional group. J Mater Sci: Mater Electron 28(9):6544–6551.  https://doi.org/10.1007/s10854-017-6343-6 Google Scholar
  82. Wypych A et al (2014) dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods. J Nanomater.  https://doi.org/10.1155/2014/124814 Google Scholar
  83. Yagyu H, Ifuku S, Nogi M (2017) Acetylation of optically transparent cellulose nanopaper for high thermal and moisture resistance in a flexible device substrate. Flex Print Electron 2(1):7.  https://doi.org/10.1088/2058-8585/aa60f4 Google Scholar
  84. Yang L, Ji HL, Zhu KJ, Wang J, Qiu JH (2016) Dramatically improved piezoelectric properties of poly(vinylidene fluoride) composites by incorporating aligned TiO2@MWCNTs. Compos Sci Technol 123:259–267.  https://doi.org/10.1016/j.compscitech.2015.11.032 Google Scholar
  85. Yang J, Xie H, Chen H, Shi Z, Wu T, Yang Q, Xiong C (2018a) Cellulose nanofibril/boron nitride nanosheet composites with enhanced energy density and thermal stability by interfibrillar cross-linking through Ca 2+. J Mater Chem A 6(4):1403–1411.  https://doi.org/10.1039/C7TA08188J Google Scholar
  86. Yang Q, Zhang C, Shi Z, Wang J, Xiong C, Saito T, Isogai A (2018b) Luminescent and transparent nanocellulose films containing europium carboxylate groups as flexible dielectric materials. ACS Appl Nano Mater 1(9):4972–4979.  https://doi.org/10.1021/acsanm.8b01112 Google Scholar
  87. Yin J et al (2014) Effect of MMT content on structure of polyimide/(TiO2 + MMT) nanocomposite films. In: 2014 9th international forum on strategic technology (IFOST), pp 475–478.  https://doi.org/10.1109/IFOST.2014.6991167
  88. Yuan Y, Cui YR, Wu KT, Huang QQ, Zhang SR (2014) TiO2 and SiO2 filled PTFE composites for microwave substrate applications. J Polym Res 21(2):6.  https://doi.org/10.1007/s10965-014-0366-y Google Scholar
  89. Yuan Y, Wang J, Yao MH, Tang B, Li EZ, Zhang SR (2018) Influence of SiO2 addition on properties of PTFE/TiO2 microwave composites. J Electron Mater 47(1):633–640.  https://doi.org/10.1007/s11664-017-5826-9 Google Scholar
  90. Zeng XL, Deng LB, Yao YM, Sun R, Xu JB, Wong CP (2016) Flexible dielectric papers based on biodegradable cellulose nanofibers and carbon nanotubes for dielectric energy storage. J Mater Chem C 4(25):6037–6044.  https://doi.org/10.1039/c6tc01501h Google Scholar
  91. Zha JW, Dang ZM, Song HT, Yin Y, Chen G (2010a) Dielectric properties and effect of electrical aging on space charge accumulation in polyimide/TiO2 nanocomposite films. J Appl Phys 108(9):6.  https://doi.org/10.1063/1.3506715 Google Scholar
  92. Zha JW, Dang ZM, Zhou T, Song HT, Chen G (2010b) Electrical properties of TiO2-filled polyimide nanocomposite films prepared via an in situ polymerization process. Synth Metals 160(23–24):2670–2674.  https://doi.org/10.1016/j.synthmet.2010.10.024 Google Scholar
  93. Zhou Y, Huang X, Huang J, Zhang L, Zhou Z (2018) Predicting the dielectric properties of nanocellulose-modified presspaper based on the multivariate analysis method. Molecules 23(7):1507.  https://doi.org/10.3390/molecules23071507 Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Power and Mechanical EngineeringWuhan UniversityWuhanChina
  2. 2.School of Chemical and Biomolecular Engineering and Renewable Bioproducts InstituteGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations