, Volume 26, Issue 9, pp 5513–5527 | Cite as

Electroless plating of platinum nanoparticles onto mesoporous cellulose films for catalytically active free-standing materials

  • Erlantz LizundiaEmail author
  • Marta Jimenez
  • Christian Altorfer
  • Markus Niederberger
  • Walter Caseri
Original Research


Here we report a simple and cost-effective approach for the electroless plating of platinum onto mesoporous cellulosic structures to obtain catalytically active free-standing hybrid materials. Pt nanoparticles are reduced onto native cellulosic supports through wet chemical reduction of cis-[PtCl2(sty)2] (sty = styrene). The decoration of solid cellulosic films by Pt nanoparticles was followed by Fourier transform infrared spectroscopy, reflectance mode ultraviolet–visible spectroscopy, thermogravimetric analysis, X-ray powder diffraction and scanning electron microscopy. An induction period is observed for the reduction of cis-[PtCl2(sty)2] to spherical Pt nanoparticles onto cellulosic supports, after which the amount of deposited Pt increases rapidly. Upon coating a commercially available cellulose fabric with Pt, the Brunauer–Emmett–Teller surface area increases by a factor of 4. Catalytic properties of obtained materials are examined for two model reactions; the reduction of 4-nitrophenol to 4-aminophenol and the hydrosilylation of styrene with triethylsilane. Catalysis was particularly efficient using previously synthesized mesoporous cellulose nanocrystal films as supports due to their high specific surface area up to 177 m2 g−1. Free-standing Pt-decorated mesoporous cellulose films could be potentially used in catalytic applications for the production of industrially relevant compounds and wastewater treatment.

Graphical abstract

An approach for the electroless plating of platinum onto mesoporous cellulosic structures to obtain catalytically active free-standing hybrid materials is here reported. Obtained materials show a potential application for novel production procedures applied to industrially relevant compounds.


Cellulose nanocrystals Mesoporous materials Platinum Catalysis Hydrosilylation 



We thank Andreas Braendle for experimental support in the hydrosilylation experiments and Elena Tervoort for the assistance provided during SEM analyses. The authors gratefully acknowledge ETH Zürich for financial support. Erlantz Lizundia thanks The Spanish Ministry of Education, Culture and Sport for the “José Castillejo” mobility grant.

Compliance with ethical standards

Data availability

All the data used to support the findings of this study are included within the article.

Conflicts of interest

The authors declare no competing financial interest.

Supplementary material

10570_2019_2463_MOESM1_ESM.docx (6.7 mb)
Supplementary material 1 (DOCX 6859 kb)


  1. Albinati A, Caseri WR, Pregosin PS (1987) Hydrosilylation with platinum complexes. Preparation, low-temperature NMR spectra, and X-ray crystal structure of the novel bis-olefin catalyst cis-PtCl2(PhCH=CH2)2. Organometallics 6:788–793CrossRefGoogle Scholar
  2. Argudo Garcia JJ, Molina Moreno VLDJ (2017) Valorization of sludge from drinking water treatment plants. A commitment to circular economy and sustainability. Dyna 92:71–75CrossRefGoogle Scholar
  3. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570CrossRefPubMedGoogle Scholar
  4. Chen M, Kang H, Gong Y et al (2015) Bacterial cellulose supported gold nanoparticles with excellent catalytic properties. ACS Appl Mater Interfaces 7:21717–21726CrossRefPubMedGoogle Scholar
  5. Cruz-Tato P, Ortiz-Quiles EO, Vega-Figueroa K et al (2017) Metalized nanocellulose composites as a feasible material for membrane supports: design and applications for water treatment. Environ Sci Technol 51:4585–4595CrossRefPubMedGoogle Scholar
  6. Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998CrossRefPubMedGoogle Scholar
  7. Eisa WH, Abdelgawad AM, Rojas OJ (2018) Solid-state synthesis of metal nanoparticles supported on cellulose nanocrystals and their catalytic activity. ACS Sustain Chem Eng 6:3963–3974CrossRefGoogle Scholar
  8. Emam HE, Ahmed HB (2018) Carboxymethyl cellulose macromolecules as generator of anisotropic nanogold for catalytic performance. Int J Biol Macromol 111:999–1009CrossRefPubMedGoogle Scholar
  9. Emam HE, El-Bisi MK (2014) Merely Ag nanoparticles using different cellulose fibers as removable reductant. Cellulose 21:4219–4230CrossRefGoogle Scholar
  10. Emam HE, El-Zawahry MM, Ahmed HB (2017a) One-pot fabrication of AgNPs, AuNPs and Ag-Au nano-alloy using cellulosic solid support for catalytic reduction application. Carbohydr Polym 166:1–13CrossRefPubMedGoogle Scholar
  11. Emam HE, Zahran MK, Ahmed HB (2017b) Generation of biocompatible nanogold using H2O2–starch and their catalytic/antimicrobial activities. Eur Polym J 90:354–367CrossRefGoogle Scholar
  12. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRefGoogle Scholar
  13. Fürstner A (2009) Gold and platinum catalysis—a convenient tool for generating molecular complexity. Chem Soc Rev 38:3208–3221CrossRefPubMedGoogle Scholar
  14. Gianini M, Caseri WR, Suter UW (2001) Polymer nanocomposites containing superstructures of self-organized platinum colloids. J Phys Chem B 105:7399–7404CrossRefGoogle Scholar
  15. Goikuria U, Larrañaga A, Vilas JL, Lizundia E (2017) Thermal stability increase in metallic nanoparticles-loaded cellulose nanocrystal nanocomposites. Carbohydr Polym 171:193–201CrossRefPubMedGoogle Scholar
  16. Grzelczak M, Vermant J, Furst EM, Liz-Marzán LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605CrossRefPubMedGoogle Scholar
  17. Isayev O, Rasulev B, Gorb L, Leszczynski J (2006) Structure-toxicity relationships of nitroaromatic compounds. Mol Divers 10:233–245CrossRefPubMedGoogle Scholar
  18. Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637CrossRefGoogle Scholar
  19. Kelly JA, Yu M, Hamad WY, Maclachlan MJ (2013) Large, crack-free freestanding films with chiral nematic structures. Adv Opt Mater 1:295–299CrossRefGoogle Scholar
  20. Kelly JA, Giese M, Shopsowitz KE et al (2014) The development of chiral nematic mesoporous materials. Acc Chem Res 47:1088–1096CrossRefPubMedGoogle Scholar
  21. Khalily MA, Eren H, Akbayrak S et al (2016) Facile synthesis of three-dimensional Pt-TiO2 nano-networks: a highly active catalyst for the hydrolytic dehydrogenation of ammonia–borane. Angew Chemie 55:12257–12261CrossRefGoogle Scholar
  22. Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744CrossRefPubMedGoogle Scholar
  23. Lemine OM (2009) Microstructural characterisation of α-Fe2O3 nanoparticles using, XRD line profiles analysis, FE-SEM and FT-IR. Supperlattices Microstruct 45:576–582CrossRefGoogle Scholar
  24. Li Z, Yao C, Yu Y et al (2014) Highly efficient capillary photoelectrochemical water splitting using cellulose nanofiber-templated TiO2 photoanodes. Adv Mater 26:2262–2267CrossRefPubMedGoogle Scholar
  25. Li X, Liu B, Ye W et al (2015) Effect of rectorite on the synthesis of Ag NP and its catalytic activity. Mater Chem Phys 151:301–307CrossRefGoogle Scholar
  26. Li Z, Yao C, Wang YC et al (2016) High-density platinum nanoparticle-decorated titanium dioxide nanofiber networks for efficient capillary photocatalytic hydrogen generation. J Mater Chem A 4:11672–11679CrossRefGoogle Scholar
  27. Ling Y, Li X, Zhou S et al (2015) Multifunctional cellulosic paper based on quaternized chitosan and gold nanoparticle–reduced graphene oxide via electrostatic self-assembly. J Mater Chem A 3:7422–7428CrossRefGoogle Scholar
  28. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921CrossRefPubMedGoogle Scholar
  29. Lizundia E, Vilas JL, León LM (2015) Crystallization, structural relaxation and thermal degradation in Poly(l-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym 123:256–265CrossRefPubMedGoogle Scholar
  30. Lizundia E, Nguyen TD, Vilas JL et al (2017) Chiroptical, morphological and conducting properties of chiral nematic mesoporous cellulose/polypyrrole composite films. J Mater Chem A 5:19184–19194CrossRefGoogle Scholar
  31. Lizundia E, Goikuria U, Vilas JL et al (2018) Metal nanoparticles embedded in cellulose nanocrystal based films: material properties and post-use analysis. Biomacromol 19:2618–2628CrossRefGoogle Scholar
  32. Lucchini M, Lizundia E, Moser S et al (2018) Titania-cellulose hybrid monolith for in-flow purification of water under solar illumination. ACS Appl Mater Interfaces 10:29599–29607CrossRefPubMedGoogle Scholar
  33. Markovic S, Mitric M, Starcevic G, Uskokovic D (2008) Ultrasonic de-agglomeration of barium titanate powder. Ultrason Sonochem 15:16–20CrossRefPubMedGoogle Scholar
  34. Meister TK, Riener K, Gigler P et al (2016) Platinum catalysis revisited-unraveling principles of catalytic olefin hydrosilylation. ACS Catal 6:1274–1284CrossRefGoogle Scholar
  35. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941CrossRefPubMedGoogle Scholar
  36. Neelgund GM, Oki A (2017) Graphene-coupled ZnO: a robust NIR-induced catalyst for rapid photo-oxidation of cyanide. ACS Omega 2:9095–9102CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ngo H, Lai N, Isabelle LR (2016) High second-order nonlinear response of platinum nanoflowers: the role of surface corrugation. Nanoscale 8:3489–3495CrossRefPubMedGoogle Scholar
  38. Pan K, Wang W-X (2012) Trace metal contamination in estuarine and coastal environments in China. Sci Total Environ 421–422:3–16CrossRefPubMedGoogle Scholar
  39. Pandey S, Mishra SB (2014) Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum. Carbohydr Polym 113:525–531CrossRefPubMedGoogle Scholar
  40. Pernstich KP, Schenker M, Weibel F et al (2010) Electroless plating of ultrathin films and mirrors of platinum nanoparticles onto polymers, metals, and ceramics. ACS Appl Mater Interfaces 2:639–643CrossRefPubMedGoogle Scholar
  41. Popczun EJ, McKone JR, Read CG et al (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270CrossRefPubMedGoogle Scholar
  42. Putzien S, Nuyken O, Kühn FE (2010) Functionalized polysilalkylene siloxanes (polycarbosiloxanes) by hydrosilylation-Catalysis and synthesis. Prog Polym Sci 35:687–713CrossRefGoogle Scholar
  43. Qi X, Li X, Chen B et al (2016) Highly active nanoreactors: patchlike or thick Ni coating on Pt nanoparticles based on confined catalysis. ACS Appl Mater Interfaces 8:1922–1928CrossRefPubMedGoogle Scholar
  44. Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math Klasse 1918:98–100Google Scholar
  45. Schlesinger M, Hamad WY, MacLachlan MJ (2015) Optically tunable chiral nematic mesoporous cellulose films. Soft Matter 15:4686–4694CrossRefGoogle Scholar
  46. Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468:422–425CrossRefPubMedGoogle Scholar
  47. Sommer LH, Pietrusza EW, Whitmore FC (1947) Peroxide-catalyzed addition of trichlorosilane to 1-octene. J Am Chem Soc 69:188CrossRefGoogle Scholar
  48. Sonwane CG, Bhatia SK (2000) Characterization of pore size distributions of mesoporous materials from adsorption isotherms. J Phys Chem B 104:9099–9110CrossRefGoogle Scholar
  49. Speier JL (1979) Homogeneous catalysis of hydrosilation by transition metals. Adv Organomet Chem 17:407–447CrossRefGoogle Scholar
  50. Sprengers JW, De Greef M, Duin MA, Elsevier CJ (2003) Stable Platinum(0) catalysts for catalytic hydrosilylation of styrene and synthesis of [Pt(Ar-bian)(η2-alkene)] complexes. Eur J Inorg Chem 2003:3811–3819CrossRefGoogle Scholar
  51. Steffen W, Richardson K, Rockstrom J et al (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:1259855CrossRefPubMedGoogle Scholar
  52. Subero J, Ning Z, Ghadiri M, Thornton C (1999) Effect of interface energy on the impact strength of agglomerates. Powder Technol 105:66–73CrossRefGoogle Scholar
  53. Tian N, Zhou ZY, Sun SG et al (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735CrossRefPubMedGoogle Scholar
  54. Troegel D, Stohrer J (2011) Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Coord Chem Rev 255:1440–1459CrossRefGoogle Scholar
  55. Wei H, Rodriguez K, Renneckar S, Vikesland PJ (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci Nano 1:302–316CrossRefGoogle Scholar
  56. Wu L, Ritchie SMC (2006) Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles. Chemosphere 63:285–292CrossRefPubMedGoogle Scholar
  57. Wu X, Shi Z, Fu S et al (2016) Strategy for synthesizing porous cellulose nanocrystal supported metal nanocatalysts. ACS Sustain Chem Eng 4:5929–5935CrossRefGoogle Scholar
  58. Xi J, Xiao J, Xiao F et al (2016) Mussel-inspired functionalization of cotton for nano-catalyst support and its application in a fixed-bed system with high performance. Sci Rep 6:21904CrossRefPubMedPubMedCentralGoogle Scholar
  59. Xia BY, Bin WuH, Yan Y et al (2013) Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J Am Chem Soc 135:9480–9485CrossRefPubMedGoogle Scholar
  60. Xie X, Li Y, Liu Z-Q et al (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458:746–749CrossRefPubMedGoogle Scholar
  61. Yang J, Sun D, Li J et al (2009) In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance. Electrochim Acta 54:6300–6305CrossRefGoogle Scholar
  62. Yang J, Yuan M, Xu D et al (2018) Highly dispersed ultrafine palladium nanoparticles encapsulated in a triazinyl functionalized porous organic polymer as a highly efficient catalyst for transfer hydrogenation of aldehydes. J Mater Chem A 6:18242–18251CrossRefGoogle Scholar
  63. You J, Zhao C, Cao J et al (2014) Fabrication of high-density silver nanoparticles on the surface of alginate microspheres for application in catalytic reaction. J Mater Chem A 2:8491–8499CrossRefGoogle Scholar
  64. Yuan M, Cui Z, Yang J et al (2017) Ultrafine platinum nanoparticles modified on cotton derived carbon fibers as a highly efficient catalyst for hydrogen evolution from ammonia borane. Int J Hydrogen Energy 42:29244–29253CrossRefGoogle Scholar
  65. Zhao H, Yu G, Yuan M et al (2018) Ultrafine and highly dispersed platinum nanoparticles confined in a triazinyl-containing porous organic polymer for catalytic applications. Nanoscale 10:21466–21474CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Graphic Design and Engineering Projects, Bilbao Faculty of EngineeringUniversity of the Basque Country (UPV/EHU)BilbaoSpain
  2. 2.Laboratory for Multifunctional Materials, Department of MaterialsETH ZürichZurichSwitzerland
  3. 3.BCMaterials, Basque Center for Materials, Applications and NanostructuresUPV/EHU Science ParkLeioaSpain

Personalised recommendations