, Volume 26, Issue 6, pp 3777–3786 | Cite as

Preparation of all-cellulose composites with optical transparency using the banana pseudostem as a raw material

  • L. Chávez-GuerreroEmail author
  • S. Vazquez-Rodriguez
  • J. A. Salinas-Montelongo
  • L. E. Roman-Quirino
  • N. A. García-Gómez
Original Research


Biopolymers are intended to substitute the petroleum-based polymers and all-cellulose composite has emerged as a green alternative, especially if it can be prepared through a method consuming less energy and fewer chemicals. Here, a novel approach to obtain a nanocomposite film made of cellulose fibrils imbibed into a nanocellulose matrix is described. Banana pseudostem was used as raw material and characterized along with the resulting materials using scanning electron microscopy, optical microscopy and Raman spectroscopy, while the cellulose/nanocellulose film was studied through X-ray diffraction, UV–Vis-NIR spectroscopy and laser scanning microscopy. Results indicate that cellulose (fibrils) and nanocellulose (platelets), extracted from banana pseudostem were successfully purified using hydrolysis at a relatively low amount of chemicals. Transparent films made of a fibrils/nanoplatelets blend were prepared by the solution casting method, exhibiting a transmittance of ≈ 83–88% and a crystallinity index of ≈ 70, hence demonstrating the feasibility of this novel method to obtain cellulose/nanocellulose free-standing films.

Graphical abstract


Cellulose/nanocellulose films Agricultural waste Cellulose nanoplatelets Inner pseudostem Nanocomposites 



Control sample


Sample under alkaline pretreatment


Sample under acidic pretreatment


Sample under basic pretreatment


Cellulose nanoplatelets


Crystallinity index


X-ray diffraction


Optic microscopy


Scanning electron microscopy


Laser scanning microscopy



  1. Adeodato Vieira MG, Altenhofen da Silva M, Oliveira dos Santos L, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263. CrossRefGoogle Scholar
  2. Aurore G, Parfait B, Fahrasmane L (2009) Bananas, raw materials for making processed food products. Trends Food Sci Tech 20:78–91. CrossRefGoogle Scholar
  3. Banana market Review (2015–2016). Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  4. Bao S, Xu S, Wang Z (2009) Antioxidant activity and properties of gelatin films incorporated with tea polyphenol loaded chitosan nanoparticles. J Sci Food Agric 89:2692–2700. CrossRefGoogle Scholar
  5. Chávez-Guerrero L, Sepúlveda-Guzmán S, Rodríguez-Liñan C, Silva-Mendoza J, García-Gómez N, Pérez-Camacho O (2017) Isolation and characterization of cellulose nanoplatelets from the parenchyma cells of Agave salmiana. Cellulose 24:3741–3752. CrossRefGoogle Scholar
  6. Chávez-Guerrero L, Sepúlveda-Guzmán S, Silva-Mendoza J, Aguilar-Flores C, Pérez-Camacho O (2018) Eco-friendly isolation of cellulose nanoplatelets through oxidation under mild conditions. Carbohyd Polym 181:642–649. CrossRefGoogle Scholar
  7. Chen G, Zhang B, Zhao J, Chen H (2014) Development and characterization of food packaging film from cellulose sulfate. Food Hydrocoll 35:476–483. CrossRefGoogle Scholar
  8. Cherian BM, Pothan LA, Nguyen-Chung T, Mennig G, Kottaisamy M, Thomas S (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J Agric Food Chem 56:5617–5627. CrossRefGoogle Scholar
  9. Deepa B, Abraham E, Mathew Cherian B, Bismarck A, Blaker JJ, Pothan LA, Lopes Leao A, Ferreira de Souza S, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997. CrossRefGoogle Scholar
  10. Deepa B, Abraham E, Cordeiro N, Mozetic M, Mathew AP, Oksman K, Faria M, Thomas S, Pothan LA (2015) Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22:1075–1090. CrossRefGoogle Scholar
  11. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227. CrossRefGoogle Scholar
  12. Espino E, Cakir M, Domenek S, Román-Gutiérrez AD, Belgacem N, Bras J (2014) Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Ind Crop Prod 62:552–559. CrossRefGoogle Scholar
  13. Faradilla RHF, Lee G, Rawal A, Hutomo T, Stenzel MH, Arcot J (2016) Nanocellulose characteristics from the inner and outer layer of banana pseudo-stem prepared by TEMPO-mediated oxidation. Cellulose 23:3023–3037. CrossRefGoogle Scholar
  14. Ferrer A, Pal L, Hubbe M (2017) Nanocellulose in packaging: Advances in barrier layer technologies. Ind Crops Prod 95:574–582. CrossRefGoogle Scholar
  15. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. CrossRefGoogle Scholar
  16. Gañán P, Zuluaga R, Cruz J, Vélez JM, Retegi A, Mondragon I (2008) Elucidation of the fibrous structure of Musaceae maturate rachis. Cellulose 15:131–139. CrossRefGoogle Scholar
  17. Gierlinger N, Keplinger T, Harrington M (2012) Imaging of plant cell walls by confocal Raman microscopy. Nat Protoc 7:1694–1708. CrossRefGoogle Scholar
  18. International Organization for Standardization (ISO) (2015) ISO technical specifications ISO/TS 80004-2:2015, Nanotechnologies-Vocabulary—Part 2: nano-objectsGoogle Scholar
  19. Ivakov A et al (2017) Cellulose synthesis and cell expansion are regulated by different mechanisms in growing arabidopsis Hypocotyls. Plant Cell 29:1305. Google Scholar
  20. Khawas P, Deka SC (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohyd Polym 137:608–616. CrossRefGoogle Scholar
  21. Ma J, Zhou X, Ma J, Ji Z, Zhang X, Xu F (2014) Raman microspectroscopy imaging study on topochemical correlation between lignin and hydroxycinnamic acids in Miscanthus sinensis. Microsc Microanal 20:956–963. CrossRefGoogle Scholar
  22. Mueller S, Weder C, Foster EJ (2014) Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC Adv 4:907–915. CrossRefGoogle Scholar
  23. Nishino T, Matsuda I, Hirao K (2004) All-Cellulose Composite. Macromolecules 37:7683–7687. CrossRefGoogle Scholar
  24. Padam BS, Tin HS, Chye FY, MI A (2014) Banana by-products: an under-utilized renewable food biomass with great potential. J Food Sci Technol 51:3527–3545. CrossRefGoogle Scholar
  25. Phanthong P, Karnjanakom S, Reubroycharoen P, Hao X, Abudula A, Guan G (2017) A facile one-step way for extraction of nanocellulose with high yield by ball milling with ionic liquid. Cellulose 24:2083–2093. CrossRefGoogle Scholar
  26. Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. CrossRefGoogle Scholar
  27. Sun X, Wu Q, Zhang X, Ren S, Lei T, Li W, Xu G, Zhang Q (2018) Nanocellulose films with combined cellulose nanofibers and nanocrystals: tailored thermal, optical and mechanical properties. Cellulose 25:1103–1115. CrossRefGoogle Scholar
  28. Tibolla H, Pelissari FM, Martins JT, Vicente AA, Menegalli FC (2018) Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: characterization and cytotoxicity assessment. Food Hydrocolloid 75:192–201. CrossRefGoogle Scholar
  29. Vermerris W, Nicholson R (2008) Phenolic compound biochemistry. Springer, DordrechtGoogle Scholar
  30. Yang X, Berglund LA (2018) Water-based approach to high-strength all-cellulose material with optical transparency. ACS Sustain Chem Eng 6:501–510. CrossRefGoogle Scholar
  31. Zuluaga R, Putaux J-L, Restrepo A, Mondragon I, Gañán P (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14:585–592. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Facultad de Ingeniería Mecánica y EléctricaUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMéxico
  2. 2.Centro de Innovación, Investigación y Desarrollo en IngenieríaUniversidad Autónoma de Nuevo León UANLSan Nicolás de los GarzaMexico
  3. 3.Universidad Politécnica de ApodacaApodacaMéxico
  4. 4.Facultad de Ciencias QuímicasUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  5. 5.Centro de Investigación en Biotecnología y Nanotecnología (CIByN). Facultad de Ciencias QuímicasUniversidad Autónoma de Nuevo León (UANL). Parque de Investigación e Innovación TecnológicaApodacaMéxico

Personalised recommendations