, Volume 26, Issue 6, pp 4039–4060 | Cite as

Carboxymethyl cellulose supported magnetic graphene oxide composites by plasma induced technique and their highly efficient removal of uranium ions

  • Pengfei ZongEmail author
  • Duanlin CaoEmail author
  • Yuan ChengEmail author
  • Shoufang Wang
  • Jinsong Zhang
  • Zhiqiang Guo
  • Tasawar Hayat
  • Njud S. Alharbi
  • Chaohui He
Original Research


In recent years, hazardous radionuclides and heavy metal ions contaminations in wastewaters have caused serious harm to the public and environment. Thus the application of remediation technology is more challenging. Herein, carboxymethyl cellulose supported magnetic graphene oxide composites (CMC/MGOs) are successfully synthesized using novel low temperature plasma technique. The SEM, TEM, XRD, FTIR, TGA and Raman spectra analysis can provide favorable evidence for the successful addition of CMC onto MGOs composite surfaces. The kinetics and isotherms of sorption of U(VI) onto CMC/MGOs composites can be excellently simulated by the pseudo-second-order kinetics model and the Langmuir model, respectively. The maximum capacity of CMC/MGOs composites for U(VI) calculated from the Langmuir model at pH 5.5 and 301 K is 7.94 × 10−4 mol/g. The experimental data indicate that uranium ions can interact with CMC/MGOs through inner-sphere surface complexation over the entire range of pH values. The experimental results suggest that CMC/MGOs composites can be regarded as potential adsorbent to remove uranium ions from wastewater systems.

Graphical abstract


CMC/MGOs U(VI) Interaction mechanism Sorption capacity 



Financial support from the National Natural Science Foundation of China (Nos. 21401179, 21677045) is acknowledged.


  1. Bargar JR, Reitmeyer R, Lenhart JJ, Davis JA (2000) Characterization of U(VI)-carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements. Geochim Cosmochim Acta 64:2737CrossRefGoogle Scholar
  2. Başarır SS, Bayramgil NP (2013) The uranium recovery from aqueous solutions using amidoxime modified cellulose derivatives. IV. Recovery of uranium by amidoximated hydroxypropyl methylcellulose. Cellulose 20:827CrossRefGoogle Scholar
  3. Bryant DE, Stewart DI, Kee TP, Barton CS (2003) Development of a functionalized polymer-coated silica for the removal of uranium from groundwater. Environ Sci Technol 37:4011CrossRefGoogle Scholar
  4. Cai YW, Wu CF, Liu ZY, Zhang LJ, Chen LH, Wang JQ, Wang XK, Yang ST, Wang SA (2017a) Fabrication of a phosphorylated graphene oxide–chitosan composite for highly effective and selective capture of U(VI). Environ Sci Nano 4:1876CrossRefGoogle Scholar
  5. Cai YW, Yuan F, Wang XM, Sun Z, Chen Y, Liu ZY, Wang XK, Yang ST, Wang SA (2017b) Synthesis of core–shell structured Fe3O4@carboxymethyl cellulose magnetic composite for highly efficient removal of Eu(III). Cellulose 24:175CrossRefGoogle Scholar
  6. Catalano JG, Brown GE (2005) Uranyl adsorption onto montmorillonite: evaluation of binding sites and carbonate complexation. Geochim Cosmochim Acta 69:2995CrossRefGoogle Scholar
  7. Chen Z, Liang Y, Jia DS, Chen WY, Cui ZM, Wang XK (2017) Layered silicate RUB-15 for efficient removal of UO2 2+ and heavy metal ions by ion-exchange. Environ Sci Nano 4:1851CrossRefGoogle Scholar
  8. Clifford DA, Zhang Z (1994) Modifying ion exchange for combined removal of uranium and radium. J Am Water Works Assoc 86:214CrossRefGoogle Scholar
  9. Craft ES, Abu-Qare AW, Flaherty MM, Garofolo MC, Rincavage HL, Abou-Donia MB (2004) Depleted and natural uranium: chemistry and toxicological effects. J Toxicol Environ Health B 7:297CrossRefGoogle Scholar
  10. Elwakeel KZ, Ati AA (2014) Uptake of U(VI) from aqueous media by magnetic Schiff’s base chitosan composite. J Clean Prod 70:292CrossRefGoogle Scholar
  11. Fan QH, Tanaka M, Tanaka K, Sakaguchi A, Takahashi Y (2014) An EXAFS study on the effects of natural organic matter and the expandability of clay minerals on cesium adsorption and mobility. Geochim Cosmochim Acta 135:49CrossRefGoogle Scholar
  12. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095CrossRefGoogle Scholar
  13. Figueiredo MO, Silva TP, Batista MJ, Leote J, Ferreira ML, Limpo V (2011) Uranium in surface soils: an easy-and-quick assay combining X-ray diffraction and X-ray fluorescence qualitative data. J Geochem Explor 109:134CrossRefGoogle Scholar
  14. Filipov MF, Maslov OD, Bozhikov GA, Tserenpil S, Gustova MV, Milanov MV (2009) Sorption of U(VI) with soil from the region of location of the Novi Khan radioactive waste repository in Bulgaria. Radiochemistry 51:77CrossRefGoogle Scholar
  15. Fuhrer R, Herrmann IK, Athanassiou EK, Grass RN, Stark WJ (2011) Immobilized β-cyclodextrin on surface-modified carbon-coated cobalt nanomagnets: reversible organic contaminant adsorption and enrichment from water. Langmuir 27:1924CrossRefGoogle Scholar
  16. Fukami J, Yonemochi E, Yoshihashi Y, Terada K (2006) Evaluation of rapidly disintegrating tablets containing glycine and carboxymethylcellulose. Int J Pharm 310:101CrossRefGoogle Scholar
  17. Gollavelli G, Chang CC, Ling YC (2013) Facile synthesis of smart magnetic graphene for safe drinking water: heavy metal removal and disinfection control. ACS Sustain Chem Eng 1:462CrossRefGoogle Scholar
  18. Gu PC, Zhang S, Li X, Wang XX, Wen T, Jehan R, Alsaedi A, Hayat T, Wang XK (2018) Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ Pollut 240:493CrossRefGoogle Scholar
  19. Guerra DL, Leidens VL, Viana RR, Airoldi C (2010) Amazon kaolinite functionalized diethylenetriamine moieties for U(VI) removal: thermodynamic of cation-basic interactions. J Hazard Mater 180:683CrossRefGoogle Scholar
  20. Hagberg D, Karlström G, Roos BO, Gagliardi L (2005) The coordination of uranyl in water: a combined quantum chemical and molecular simulation study. J Am Chem Soc 127:14250CrossRefGoogle Scholar
  21. Hayes NF, Leckie JO (1987) Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces. J Colloid Interface Sci 115:564CrossRefGoogle Scholar
  22. Hokkanen S, Repo E, Suopajärvi T, Liimatainen H, Niinimaa J, Sillanpää M (2014) Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21:1471CrossRefGoogle Scholar
  23. Hou J, Wang XX, Hayat T, Wang XK (2017) Ecotoxicological effects and mechanism of CuO nanoparticles to individual organisms. Environ Pollut 221:209CrossRefGoogle Scholar
  24. Hou J, Liu HQ, Wang LY, Duan LS, Li SG, Wang XK (2018) Molecular toxicity of metal oxide nanoparticles in Danio rerio. Environ Sci Technol 52:7996CrossRefGoogle Scholar
  25. Hu BW, Chen GH, Jin CG, Hu J, Huang CC, Sheng J, Sheng GD, Ma JY, Huang YY (2017) Macroscopic and spectroscopic studies of the enhanced scavenging of Cr(VI) and Se(VI) from water by titanate nanotube anchored nanoscale zero-valent iron. J Hazard Mater 336:214CrossRefGoogle Scholar
  26. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRefGoogle Scholar
  27. Ibrahim AA, Adel AM, EI-Wahab ZHA, AIShemy MT (2011) Utilization of carboxymethyl cellulose based on bean hulls as chelating agent: synthesis, characterization and biological activity. Carbohydr Polym 83:94CrossRefGoogle Scholar
  28. Jabeen H, Chandra V, Jung S, Lee JW, Kim KS, Kim SB (2011) Enhanced Cr(VI) removal using iron nanoparticle decorated graphene. Nanoscale 3:3583–3585CrossRefGoogle Scholar
  29. Jang JH, Dempsey BA, Burgos WD (2008) Reduction of U(VI) by Fe(II) in the presence of hydrous ferric oxide and hematite: effects of solid transformation, surface coverage and humic acid. Water Res 42:2269CrossRefGoogle Scholar
  30. Kaur M, Zhang HJ, Martin L, Todd T, Qiang Y (2013) Conjugates of magnetic nanoparticle actinide specific chelator for radioactive waste separation. Environ Sci Technol 47:11942CrossRefGoogle Scholar
  31. Kaynar Ü, Ayvacıklı M, Kaynar S, Hiçsönmez Ü (2014) Removal of uranium(VI) from aqueous solutions using nanoporous ZnO prepared with microwave-assisted combustion synthesis. J Radioanal Nucl Chem 299:1469CrossRefGoogle Scholar
  32. Kim BC, Lee J, Um W, Kim J, Joo J, Lee JH, Kwak JH, Kim JH, Lee C, Lee H, Addleman RS, Hyeon T, Gu MB, Kim J (2011) Magnetic mesoporous materials for removal of environmental wastes. J Hazard Mater 192:1140CrossRefGoogle Scholar
  33. Kurttio P, Komulainen H, Leino A, Salonen L, Auvinen A, Saha H (2004) Bone as a possible target of chemical toxicity of natural uranium in drinking water. Environ Health Perspect 113:68CrossRefGoogle Scholar
  34. Lan E, Male KB, Chong JH, Leung ACW, Luong JHT (2012) Applications of functionalized and nanoparticle-modified nanocrystalline cellulose: a review. Trends Biotechnol 30:283CrossRefGoogle Scholar
  35. Lan T, Wang H, Liao JL, Yang YY, Chai ZF, Liu N, Wang DQ (2016) Dynamics of humic acid and its interaction with uranyl in the presence of hydrophobic surface implicated by molecular dynamics simulations. Environ Sci Technol 50:11121CrossRefGoogle Scholar
  36. Li Y, Shen B, Pei XL, Zhang YG, Yi D, Zhai WT, Zhang LH, Wei XC, Zheng WG (2016) Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon 100:375CrossRefGoogle Scholar
  37. Li J, Wang XX, Zhao GX, Chen CL, Chai ZF, Alsaedi A, Hayat T, Wang XK (2018) Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47:2322CrossRefGoogle Scholar
  38. Lian PC, Zhu XF, Xiang HF, Li Z, Yang WS, Wang HH (2010) Enhanced cycling performance of Fe3O4–graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:834CrossRefGoogle Scholar
  39. Liger E, Charlet L, Cappellen PV (1999) Surface catalysis of uranium(VI) reduction by iron(II). Geochim Cosmochim Acta 63:2939CrossRefGoogle Scholar
  40. Liu JH, Chen GS, Jiang M (2011) Supramolecular hybrid hydrogels from noncovalently functionalized graphene with block copolymers. Macromolecules 44:7682CrossRefGoogle Scholar
  41. Ma S, Huang L, Ma L, Shim Y, Islam SM, Wang P, Zhao LD, Wang S, Sun G, Yang X, Kanatzidis MG (2015) Efficient uranium capture by polysulfide/layered double hydroxide composites. J Am Chem Soc 137:3670CrossRefGoogle Scholar
  42. Miller AC, Brooks K, Smith J, Page N (2004) Effect of the militarily-relevant heavy metals, depleted uranium and heavy metal tungsten-alloy on gene expression in human liver carcinoma cells. Mol Cell Biochem 255:247CrossRefGoogle Scholar
  43. Missana T, Gutierrez MG, Fernndez V (2003) Uranium(VI) sorption on colloidal magnetite under anoxic environment: experimental study and surface complexation modeling. Geochim Cosmochim Acta 67:2543CrossRefGoogle Scholar
  44. Rezaei A, Khani H, Masteri-Farahani M, Rofouei MK (2012) A novel extraction and preconcentration of ultra-trace levels of uranium ions in natural water samples using functionalized magnetic-nanoparticles prior to their determination by inductively coupled plasma-optical emission spectrometry. Anal Methods 4:4107CrossRefGoogle Scholar
  45. Sadeghi S, Aboobakri E (2012) Magnetic nanoparticles with an imprinted polymer coating for the selective extraction of uranyl ions. Microchim Acta 178:89CrossRefGoogle Scholar
  46. Shao DD, Jiang ZQ, Wang XX, Li JX, Meng YD (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2 2+ from aqueous solution. J Phys Chem B 113:860CrossRefGoogle Scholar
  47. Sheng GD, Alsaedi A, Shammakh W, Monaquel S, Sheng J, Wang XK, Li H, Huang YY (2016a) Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation. Carbon 99:123CrossRefGoogle Scholar
  48. Sheng GD, Yang PJ, Tang YN, Hu QY, Li H, Ren XM, Hu BW, Wang XK, Huang YY (2016b) New insights into the primary roles of diatomite in the enhanced sequestration of UO2 2+ by zerovalent iron nanoparticles: an advanced approach utilizing XPS and EXAFS. Appl Catal B Environ 193:189CrossRefGoogle Scholar
  49. Simsek S, Ulusoy U (2012) Uranium and lead adsorption onto bentonite and zeolite modified with polyacrylamidoxime. J Radioanal Nucl Chem 292:41CrossRefGoogle Scholar
  50. Singh V, Ahmad S (2012) Synthesis and characterization of carboxymethyl cellulose-silver nanoparticle (AgNP)-silica hybrid for amylase immobilization. Cellulose 19:1759CrossRefGoogle Scholar
  51. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558CrossRefGoogle Scholar
  52. Sun H, Cao L, Lu L (2011) Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 46:550CrossRefGoogle Scholar
  53. Sun YB, Yang SB, Chen Y, Ding CC, Cheng WC, Wang XK (2015) Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ Sci Technol 49:4255CrossRefGoogle Scholar
  54. Sun YB, Wu ZY, Wang XX, Ding CC, Cheng WC, Yu SH, Wang XK (2016) Macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on carbonaceous nanofibers. Environ Sci Technol 50:4459CrossRefGoogle Scholar
  55. Sun YB, Lu SH, Wang XX, Xu C, Li JX, Chen CL, Chen J, Hayat T, Alsaedi A, Alharbi NS, Wang XK (2017) Plasma-facilitated synthesis of amidoxime/carbon nanofiber hybrids for effective enrichment of U-238(VI) and Am-241(III). Environ Sci Technol 51:12274CrossRefGoogle Scholar
  56. Tan XL, Fang M, Ren XM, Mei HY, Shao DD, Wang XK (2014) Effect of silicate on the formation and stability of Ni–Al LDH at the γ-Al2O3 surface. Environ Sci Technol 48:13138CrossRefGoogle Scholar
  57. Tan P, Wen JJ, Hu YY, Tan XJ (2016) Adsorption of Cu2+ and Cd2+ from aqueous solution by novel electrospun poly(vinyl alcohol)/graphene oxide nanofibers. RSC Adv 6:79641CrossRefGoogle Scholar
  58. Tan XL, Fang M, Tan LQ, Liu HN, Ye XS, Hayate T, Wang XK (2018) Core–shell hierarchical C@Na2Ti3O7·9H2O nanostructures for the efficient removal of radionuclides. Environ Sci Nano 5:1140CrossRefGoogle Scholar
  59. Tian G, Geng JX, Jin YD, Wang CL, Li SQ, Chen Z, Wang H, Zhao YS, Li SJ (2011) Sorption of uranium(VI) using oxime-grafted ordered mesoporous carbon CMK-5. J Hazard Mater 190:442CrossRefGoogle Scholar
  60. Troyer LD, Maillot F, Wang Z, Wang Z, Mehta VS, Giammar DE, Catalano JG (2016) Effect of phosphate on U(VI) sorption to montmorillonite: ternary complexation and precipitation barriers. Geochim Cosmochim Acta 175:86CrossRefGoogle Scholar
  61. Wang G, Liu J, Wang X, Xie Z, Deng N (2009) Adsorption of uranium(VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053CrossRefGoogle Scholar
  62. Wang YQ, Zhang ZB, Liu YH, Cao XH, Liu YT, Li Q (2012) Adsorption of U(VI) from aqueous solution by the carboxyl-mesoporous carbon. Chem Eng J 198:246CrossRefGoogle Scholar
  63. Wang Q, Wang XK, Chai ZF, Hu WP (2013) Low-temperature plasma synthesis of carbon nanotubes and graphene based materials and their fuel cell applications. Chem Soc Rev 42:8821CrossRefGoogle Scholar
  64. Wang XX, Yu SJ, Chen ZS, Zhao YS, Jin J, Wang XK (2017) Microstructures and speciation of radionuclides in natural environment studied by advanced spectroscopy and theoretical calculation. Sci China Chem 60:1149CrossRefGoogle Scholar
  65. Wang J, Wang XX, Zhao GX, Song G, Chen DY, Chen HX, Xie J, Hayat T, Alsaedi A, Wang XK (2018) Polyvinylpyrrolidone and polyacrylamide intercalated molybdenum disulfide as adsorbents for enhanced removal of chromium(VI) from aqueous solutions. Chem Eng J 334:569CrossRefGoogle Scholar
  66. Williams CD, Carbone P (2016) Selective removal of technetium from water using graphene oxide membranes. Environ Sci Technol 50:3875CrossRefGoogle Scholar
  67. Wu XL, Zhao DL, Yang ST (2011) Impact of solution chemistry conditions on the sorption behavior of Cu(II) on Lin’an montmorillonite. Desalination 269:84CrossRefGoogle Scholar
  68. Wu J, Chen K, Tan XL, Fang M, Hu XY, Tang ZW, Wang XK (2018) Core–shell CMNP@PDAP nanocomposites for simultaneous removal of chromium and arsenic. Chem Eng J 349:481CrossRefGoogle Scholar
  69. Xie Y, Helvenston EM, Shilller-Nickles LC, Powell BA (2016) Surface complexation modeling of Eu(III) and U(VI) interactions with graphene oxide. Environ Sci Technol 50:1821CrossRefGoogle Scholar
  70. Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324CrossRefGoogle Scholar
  71. Xu L, Zheng T, Yang ST, Zhang LJ, Wang JQ, Liu W, Chen LH, Diwu J, Chai ZF, Wang SA (2016) Uptake mechanisms of Eu(III) on hydroxyapatite: a potential permeable reactive barrier backfill material for trapping trivalent minor actinides. Environ Sci Technol 50:3852CrossRefGoogle Scholar
  72. Yadav M, Rhee KY, Jung IH, Park SJ (2013) Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20:687CrossRefGoogle Scholar
  73. Yan S, Hua B, Bao ZY, Liu CX, Deng B (2010) Uranium (VI) removal by nanoscale zerovalent iron in anoxic batch systems. Environ Sci Technol 44:7783CrossRefGoogle Scholar
  74. Yang ST, Sheng GD, Tan XL, Hu J, Du JZ, Montavon G, Wang XK (2011) Determination of Ni(II) uptake mechanisms on mordenite surfaces: a combined macroscopic and microscopic approach. Geochim Cosmochim Acta 75:6520CrossRefGoogle Scholar
  75. Yang ST, Zong PF, Ren XM, Wang Q, Wang XK (2012) Rapid and highly efficient preconcentration of Eu(III) by core–shell structured Fe3O4@humic acid magnetic nanoparticles. ACS Appl Mater Interfaces 4:6891CrossRefGoogle Scholar
  76. Yang ST, Sheng GD, Montavon G, Guo ZQ, Tan XL, Grambow B, Wang XK (2013) Investigation of Eu(III) immobilization on γ-Al2O3 surfaces by combining batch technique and EXAFS analyses: role of contact time and humic acid. Geochim Cosmochim Acta 121:84CrossRefGoogle Scholar
  77. Yang ST, Ren XM, Zhao GX, Shi WQ, Montavon G, Grambow B, Wang XK (2015) Competitive sorption and selective sequence of Cu(II) and Ni(II) on montmorillonite: batch, modeling, EPR and XAS studies. Geochim Cosmochim Acta 166:129CrossRefGoogle Scholar
  78. Yao W, Wu YH, Pang HW, Wang XX, Yu SJ, Wang XK (2018) In-situ reduction synthesis of manganese dioxide@polypyrrole core/shell nanomaterial for highly efficient enrichment of U(VI) and Eu(III). Sci China Chem 61:812CrossRefGoogle Scholar
  79. Yin L, Song S, Wang XX, Niu FL, Ma R, Yu SJ, Wen T, Chen YT, Hayat T, Alsaedi A, Wang XK (2018) Rationally designed core–shell and yolk–shell magnetic titanate nanosheets for efficient U(VI) adsorption performance. Environ Pollut 238:725CrossRefGoogle Scholar
  80. Yu SJ, Wang XX, Tan XL, Wang XK (2015) Sorption of radionuclides from aqueous systems onto graphene oxide-based materials: a review. Inorg Chem Front 2:593CrossRefGoogle Scholar
  81. Yu SJ, Liu Y, Ai YJ, Wang XX, Zhang R, Chen ZS, Chen Z, Zhao GX, Wang XK (2018a) Rational design of carbonaceous nanofiber/Ni–Al layered double hydroxide nanocomposites for high-efficiency removal of heavy metals from aqueous solutions. Environ Pollut 242:1CrossRefGoogle Scholar
  82. Yu SJ, Wang XX, Pang HW, Zhang R, Song WC, Fu D, Hayat T, Wang XK (2018b) Boron nitride-based materials for the removal of pollutants from aqueous solutions: a review. Chem Eng J 333:343CrossRefGoogle Scholar
  83. Zhang CL, Li X, Chen ZS, Wen T, Huang SY, Hayat T, Alsaedi A, Wang XK (2018) Synthesis of ordered mesoporous carbonaceous materials and their highly efficient capture of uranium from solutions. Sci China Chem 61:281CrossRefGoogle Scholar
  84. Zhao GX, Huang XB, Tang ZW, Huang QF, Niu FL, Wang XK (2018) Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polym Chem 9:3562CrossRefGoogle Scholar
  85. Zong PF, Wang SF, Zhao YL, Wang H, Pan H, He CH (2013) Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem Eng J 220:45CrossRefGoogle Scholar
  86. Zong PF, Cao DL, Cheng Y, Wang SF, Hayat T, Alharbi NS, Guo ZQ, Zhao YL, He CH (2018) Enhanced performance for Eu(III) ion remediation using magnetic multiwalled carbon nanotubes functionalized with carboxymethyl cellulose nanoparticles synthesized by plasma technology. Inorg Chem Front 5:3184CrossRefGoogle Scholar
  87. Zu G, Shen J, Zou L, Wang F, Wang X, Zhang Y, Yao X (2016) Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99:203CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyNorth University of ChinaTaiyuanPeople’s Republic of China
  2. 2.Reactor Operation and Application Sub-InstituteNuclear Power Institute of ChinaChengduPeople’s Republic of China
  3. 3.School of Resources and Environmental EngineeringHefei University of TechnologyHefeiPeople’s Republic of China
  4. 4.Department of MathematicsQuaid-I-Azam UniversityIslamabadPakistan
  5. 5.NAAM Research GroupKing Abdulaziz UniversityJeddahSaudi Arabia
  6. 6.Biotechnology Research Group, Department of Biological Sciences, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  7. 7.School of Nuclear Science and TechnologyXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations