Advertisement

Cellulose

, Volume 26, Issue 6, pp 3909–3922 | Cite as

Waste cotton fiber/Bi2WO6 composite film for dye removal

  • Qin Qin
  • Ronghui GuoEmail author
  • Shaojian Lin
  • Shouxiang Jiang
  • Jianwu Lan
  • Xiaoxu Lai
  • Ce Cui
  • Hongyan Xiao
  • Yong Zhang
Original Research
  • 93 Downloads

Abstract

In this study, the waste cotton fiber (WCF)/Bi2WO6 (BWO) composite film was prepared from BWO and WCF, which is dissolved in ionic liquid ([Amim]Cl). The samples were systematically characterized by scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller surface area and UV–Vis diffuse reflection spectroscopy. The removal efficiency of rhodamine b (RhB) and methylene blue (MB) by the composite film in the dark and under visible light were investigated. The results show that the removal abilities of the composite films for RhB and MB are improved with the rise of BWO content. The removal efficiency of RhB and MB arrives at 93.73% and 97.04% under visible light irradiation when the BWO content is 1.5%, respectively. The degradation rate of MB still reaches 89% after four cycle tests. Superoxide radicals (\( ^{\cdot} {\text{O}}_{2}^{ - } \)) and holes (h+) plays a major role in the degradation and hydroxyl radicals (·OH) plays an minor role. The WCF/BWO composite film can be potentially applied in photocatalysis and wastewater treatment fields.

Graphical abstract

Keywords

Waste cotton fiber Bi2WO6 Adsorption and photocatalytic activity Composite film Dye removal 

List of symbols

D

The degradation efficiency of RhB

A0

The initial absorbance of RhB

At

The absorbance of RhB after being exposed to visible light for a period of time

K

The rate constant

\( ^{\cdot} {\text{O}}_{2}^{ - } \)

Superoxide radical

h+

Hole

·OH

Hydroxyl radical

Abbreviations

WCF

Waste cotton fiber

BWO

Bi2WO6

RhB

Rhodamine b

MB

Methylene blue

[Amim]Cl

1-Allyl-3-methylimidazolium chloride

CTAB

Cetyl trimethyl ammonium bromide

DMAc

Dimethylacetamide

SEM

Scanning electron microscopy

XRD

X-ray diffraction

EDS

Energy dispersive spectroscopy

XPS

X-ray photoelectron spectroscopy

BET

Brunauer–Emmett–Teller

EDTA-2Na

Ethylenediaminetetraacetic acid disodium salt

BQ

P-benzoquinone

IPA

Isopropyl alcohol

Notes

Acknowledgments

This work was financially Supported by Sichuan Science and Technology Program (2019YFG0244).

References

  1. Bilińska L, Blus K, Gmurek M, Ledakowicz S (2018) Coupling of electrocoagulation and ozone treatment for textile wastewater reuse. Chem Eng J 358:992–1001.  https://doi.org/10.1016/j.cej.2018.10.093 CrossRefGoogle Scholar
  2. Cao S, Shen B, Tong T et al (2018) 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv Funct Mater.  https://doi.org/10.1002/adfm.201800136 Google Scholar
  3. Cheng C, Du Z, Tan L et al (2017) Preparation and visible-light photocatalytic activity of bismuth tungstate/lotus fiber composite membrane. Mater Lett.  https://doi.org/10.1016/j.matlet.2017.08.114 Google Scholar
  4. Covei M, Perniu D, Bogatu C, Duta A (2017) Czts-TiO2, thin film heterostructures for advanced photocatalytic wastewater treatment. Catal Today 321:172–177.  https://doi.org/10.1016/j.cattod.2017.12.003 Google Scholar
  5. Csiszár E, Nagy S (2017) A comparative study on cellulose nanocrystals extracted from bleached cotton and flax and used for casting films with glycerol and sorbitol plasticisers. Carbohydr Polym 174:740.  https://doi.org/10.1016/j.carbpol.2017.06.103 CrossRefGoogle Scholar
  6. Dissanayake N et al (2018) Substituent effects on cellulose dissolution in imidazolium-based ionic liquids. Cellulose 25(12):6887–6900.  https://doi.org/10.1007/s10570-018-2055-1 CrossRefGoogle Scholar
  7. Dong M, Wu J, Gao M et al (2016) Fabrication of Z-scheme g-C3N4/RGO/Bi2WO6, photocatalyst with enhanced visible-light photocatalytic activity. Chem Eng J 290:136–146.  https://doi.org/10.1016/j.cej.2016.01.031 CrossRefGoogle Scholar
  8. Du Z, Cheng C, Tan L et al (2018) Enhanced photocatalytic activity of Bi2WO6/TiO2, composite coated polyester fabric under visible light irradiation. Appl Surf Sci 435:626–634.  https://doi.org/10.1016/j.apsusc.2017.11.136 CrossRefGoogle Scholar
  9. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896.  https://doi.org/10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  10. Ghaedi M, Hajjati S, Mahmudi Z, Tyagi I, Agarwal S, Maity A et al (2015) Modeling of competitive ultrasonic assisted removal of the dyes—methylene blue and safranin-o using Fe3O4 nanoparticles. Chem Eng J 268:28–37.  https://doi.org/10.1021/jp108414e CrossRefGoogle Scholar
  11. Han Y, Zhang X, Wu X et al (2015) Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures. ACS Sustain Chem Eng 3(8):1853–1859.  https://doi.org/10.1021/acssuschemeng.5b00438 CrossRefGoogle Scholar
  12. Heitmann Ana P et al (2016) Nanostructured niobium oxyhydroxide dispersed poly (3-hydroxybutyrate) (phb) films: highly efficient photocatalysts for degradation methylene blue dye. Appl Catal B 189:141–150.  https://doi.org/10.1016/j.apcatb.2016.02.031 CrossRefGoogle Scholar
  13. Hongbiao F, Xin C, Jiajie Y, Xiang L, Nan Y, Tianhe W et al (2018) Preparation of the all-solid-state z-scheme WO3/Ag/AgCl film on glass accelerating the photodegradation of pollutants under visible light. J Mater Sci 54:286–301.  https://doi.org/10.1007/s10853-018-2856-5 CrossRefGoogle Scholar
  14. Huang H, Wang S, Tian N et al (2014) A one-step hydrothermal preparation strategy for layered BiIO4/Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. RSC Adv 4(11):5561–5567.  https://doi.org/10.1039/c3ra45891a CrossRefGoogle Scholar
  15. Huang Y, Kang S, Yang Y et al (2016) Facile synthesis of Bi/Bi2WO6 nanocomposite with enhanced photocatalytic activity under visible light. Appl Catal B 196:89–99.  https://doi.org/10.1016/j.apcatb.2016.05.022 CrossRefGoogle Scholar
  16. Huo WC et al (2019) Synthesis of Bi2WO6 with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study. Chem Eng J 361:129–138.  https://doi.org/10.1016/j.cej.2018.12.071 CrossRefGoogle Scholar
  17. Jie C, Sun X, Lu C et al (2016) Water-soluble cellulose acetate from waste cotton fabrics and the aqueous processing of all-cellulose composites. Carbohydr Polym 149:60–67.  https://doi.org/10.1016/j.carbpol.2016.04.086 CrossRefGoogle Scholar
  18. Kaur A, Kansal SK (2016) Bi2WO6, nanocuboids: an efficient visible light active photocatalyst for the degradation of levofloxacin drug in aqueous phase. Chem Eng J 302:194–203.  https://doi.org/10.1016/j.cej.2016.05.010 CrossRefGoogle Scholar
  19. Lefatshe K, Muiva CM, Kebaabetswe LP (2017) Extraction of nanocellulose and in situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity. Carbohydr Polym 164:301–308.  https://doi.org/10.1016/j.carbpol.2017.02.020 CrossRefGoogle Scholar
  20. Li C, Chen G, Sun J et al (2016) Doping effect of phosphate in Bi2WO6, and universal improved photocatalytic activity for removing various pollutants in water. Appl Catal B 188:39–47.  https://doi.org/10.1016/j.apcatb.2016.01.054 CrossRefGoogle Scholar
  21. Li J, Ren D, Wu Z et al (2018) Flame retardant and visible light-activated Fe-doped TiO2 thin films anchored to wood surfaces for the photocatalytic degradation of gaseous formaldehyde. J Colloid Interface Sci 530:78–87.  https://doi.org/10.1016/j.jcis.2018.06.066 CrossRefGoogle Scholar
  22. Low J, Cheng B, Yu J (2017) Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci 392:658–686.  https://doi.org/10.1016/j.apsusc.2016.09.093 CrossRefGoogle Scholar
  23. Ma J, Liu Y, Ali O et al (2017) Fast adsorption of heavy metal ions by waste cotton fabrics based double network hydrogel and influencing factors insight. J Hazard Mater.  https://doi.org/10.1016/j.jhazmat.2017.11.041 Google Scholar
  24. Maran JP et al (2017) Ultrasound assisted citric acid mediated pectin extraction from industrial waste of Musa balbisiana. Ultrason Sonochem 35(Pt A):204–209.  https://doi.org/10.1016/j.ultsonch.2016.09.019 CrossRefGoogle Scholar
  25. Mohamed MA, Salleh WNW, Jaafar J et al (2015) Incorporation of N-doped TiO2, nanorods in regenerated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst. Carbohydr Polym 133:429–437.  https://doi.org/10.1016/j.carbpol.2015.07.057 CrossRefGoogle Scholar
  26. Mohamed MA, Abd Mutalib M, Mohd Hir ZA et al (2017) An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications. Int J Biol Macromol 103:1232–1256.  https://doi.org/10.1016/j.ijbiomac.2017.05.181 CrossRefGoogle Scholar
  27. Orasugh JT, Saha NR, Sarkar G et al (2017) A facile comparative approach towards utilization of waste cotton lint for the synthesis of nano-crystalline cellulose crystals along with acid recovery. Int J Biol Macromol 109:1246–1252.  https://doi.org/10.1016/j.ijbiomac.2017.11.123 CrossRefGoogle Scholar
  28. Qu R, Liu N, Chen Y, Zhang W, Zhang Q, Liu Y et al (2018) A MoS2 nanosheet-coated mesh for pH-induced multi-pollutant water remediation with in situ electrocatalysis. J Mater Chem A 6:6435–6441.  https://doi.org/10.1039/c8ta00685g CrossRefGoogle Scholar
  29. Reddy KO, Maheswari CU et al (2017) Preparation and characterization of regenerated cellulose films using borassus fruit fibers and an ionic liquid. Carbohydr Polym 160:203–211.  https://doi.org/10.1016/j.carbpol.2016.12.051 CrossRefGoogle Scholar
  30. Saravanan R, Gupta VK, Narayanan V et al (2014) Visible light degradation of textile effluent using novel catalyst ZnO/γ-Mn2O3. J Taiwan Inst Chem Eng 45(4):1910–1917.  https://doi.org/10.1016/j.jtice.2013.12.021 CrossRefGoogle Scholar
  31. Saravanan R, Sacari E, Gracia F, Khan MM, Mosquera E, Gupta VK (2016) Conducting pani stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq 221:1029–1033.  https://doi.org/10.1016/j.molliq.2016.06.074 CrossRefGoogle Scholar
  32. Sivarajasekar N, Baskar R (2014) Adsorption of basic red 9 on activated waste gossypium hirsutum seeds: process modeling, analysis and optimization using statistical design. J Ind Eng Chem 20(5):2699–2709.  https://doi.org/10.1016/j.jiec.2013.10.058 CrossRefGoogle Scholar
  33. Tian D, Zhang X, Lu C et al (2014) Solvent-free synthesis of carboxylate-functionalized cellulose from waste cotton fabrics for the removal of cationic dyes from aqueous solutions. Cellulose 21(1):473–484.  https://doi.org/10.1007/s10570-013-0112-3 CrossRefGoogle Scholar
  34. Wagener S, Dommershausen N, Jungnickel H et al (2016) Textile functionalization and its effects on the release of silver nanoparticles into artificial sweat. Environ Sci Technol 50(11):5927–5934.  https://doi.org/10.1021/acs.est.5b06137 CrossRefGoogle Scholar
  35. Wittmar ASM, Ulbricht M (2017) Ionic liquid-based route for the preparation of catalytically active cellulose—TiO2 porous films and spheres. Ind Eng Chem Res 56(11):1.  https://doi.org/10.1021/acs.iecr.6b04720 CrossRefGoogle Scholar
  36. Xia G, Wan J, Zhang J et al (2016) Cellulose-based films prepared directly from waste newspapers via an ionic liquid. Carbohydr Polym 124:164–171.  https://doi.org/10.1016/j.carbpol.2015.02.013 Google Scholar
  37. Zhang N, Jiang B, Zhang L, Huang Z, Sun Y, Zong Y et al (2018) Low-pressure electroneutral loose nanofiltration membranes with polyphenol-inspired coatings for effective dye/divalent salt separation. Chem Eng J 359:1442–1452.  https://doi.org/10.1016/j.cej.2018.11.033 CrossRefGoogle Scholar
  38. Zheng X et al (2019) Preparation of transparent film via cellulose regeneration: correlations between ionic liquid and film properties. Carbohydr Polym 203:214–218.  https://doi.org/10.1016/j.carbpol.2018.09.060 CrossRefGoogle Scholar
  39. Zhijiang C et al (2018) Preparation and characterization of a bi-layered nano-filtration membrane from a chitosan hydrogel and bacterial cellulose nanofiber for dye removal. Cellulose 25(9):5123–5137.  https://doi.org/10.1007/s10570-018-1914-0 CrossRefGoogle Scholar
  40. Zhou Y, Zhang Y, Lin M et al (2015) Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat Commun 6:8340.  https://doi.org/10.1038/ncomms9340 CrossRefGoogle Scholar
  41. Zhou H, Wen Z et al (2019) Z-scheme plasmonic Ag decorated WO3/Bi2WO6 hybrids for enhanced photocatalytic abatement of chlorinated-vocs under solar light irradiation. Appl Catal B 242:76–84.  https://doi.org/10.1016/j.apcatb.2018.09.090 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Qin Qin
    • 1
  • Ronghui Guo
    • 1
    Email author
  • Shaojian Lin
    • 1
  • Shouxiang Jiang
    • 2
  • Jianwu Lan
    • 1
  • Xiaoxu Lai
    • 1
  • Ce Cui
    • 1
  • Hongyan Xiao
    • 1
  • Yong Zhang
    • 1
  1. 1.College of Light Industry, Textile and Food EngineeringSichuan UniversityChengduChina
  2. 2.Institute of Textiles and ClothingThe Hong Kong Polytechnic UniversityKowloonChina

Personalised recommendations