Advertisement

Cellulose

, Volume 26, Issue 6, pp 3685–3701 | Cite as

Ultrafine grinding of poplar biomass: effect of particle morphology on the liquefaction of biomass for methyl glycosides and phenolics

  • Qiaolong Zhai
  • Fanglin Li
  • Fei Wang
  • Junfeng Feng
  • Jianchun Jiang
  • Junming XuEmail author
Original Research
  • 65 Downloads

Abstract

This paper shows that mechanical ultrafine grinding of poplar wood is an efficient pretreatment approach to enhance its reactivity during liquefaction. The microstructural features and chemical properties of biomass samples with different particle morphology were studied. In particular, we found that more cellulose and hemicellulose were exposed on the outer surface of the ultrafine powder (cellular scale of plant) and the crystal lattice structure of cellulose was significantly damaged. As a result, the degree of liquefaction reached 92.03% at 180 °C using UP feedstock, largely exceeding the value (53.35%) obtained at the same temperature using PS0.25. Two groups of value-added chemicals, namely phenolics and methyl glycosides were obtained during liquefaction. At 180 °C, the yields of methyl glycosides and phenolics obtained from an UP feedstock were, respectively, 28.45% and 10.17% higher than those obtained from the PS0.25. In addition, a high degree of liquefaction (> 90%) could be obtained at a temperature 40 °C lower than the one required by PS0.25, greatly reducing the occurrence of side reactions and improving the purity of target products. Overall, the mechanical fragmentation of biomass at cellular scale is a promising pretreatment method allowing high valorization of the entire biomass.

Graphical abstract

Keywords

Ultrafine powder Pretreatment Liquefaction Glycoside Phenolics 

Notes

Acknowledgments

The authors would like to thank the financial support provided by the National Natural Science Foundation of China (31530010) for this investigation.

Supplementary material

10570_2019_2332_MOESM1_ESM.docx (977 kb)
Supplementary material 1 (DOCX 977 kb)

References

  1. Agirrezabal-Telleria I, Gandarias I, Arias PL (2014) Heterogeneous acid-catalysts for the production of furan-derived compounds (furfural and hydroxymethylfurfural) from renewable carbohydrates: a review. Catal Today 234:42–58.  https://doi.org/10.1016/j.cattod.2013.11.027 CrossRefGoogle Scholar
  2. Barakat A, Monlau F, Solhy A, Carrere H (2015) Mechanical dissociation and fragmentation of lignocellulosic biomass: effect of initial moisture, biochemical and structural proprieties on energy requirement. Appl Energy 142:240–246.  https://doi.org/10.1016/j.apenergy.2014.12.076 CrossRefGoogle Scholar
  3. Bosch SVD, Schutyser W, Vanholme R, Driessen T, Koelewijn SF, Renders T et al (2015) Reductive lignocellulose fractionation into soluble lignin-derived phenolic mono- and dimers and processable carbohydrate pulp. Energy Environ Sci 8:1748–1763.  https://doi.org/10.1016/j.indcrop.2018.12.002 CrossRefGoogle Scholar
  4. Brand S, Kim J (2015) Liquefaction of major lignocellulosic biomass constituents in supercritical ethanol. Energy 80:64–74.  https://doi.org/10.1016/j.energy.2014.11.043 CrossRefGoogle Scholar
  5. Chen W, Mcclelland DJ, Azarpira A, Ralph J, Luo Z, Huber GW (2015) Low temperature hydrogenation of pyrolytic lignin over Ru/TiO2: 2D HSQC and 13C NMR study of reactants and products. Green Chem 18:271–281.  https://doi.org/10.1039/C5GC02286J CrossRefGoogle Scholar
  6. Chen H, Zhao X, Liu D (2016) Relative significance of the negative impacts of hemicelluloses on enzymatic cellulose hydrolysis is dependent on lignin content: evidences from substrate structural features and protein adsorption. ACS Sustain Chem Eng 4:6668–6679.  https://doi.org/10.1021/acssuschemeng.6b01540 CrossRefGoogle Scholar
  7. Chundawat SP, Venkatesh B, Dale BE (2007) Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol Bioeng 96:219–231.  https://doi.org/10.1002/bit.21132 CrossRefGoogle Scholar
  8. Da SA, Inoue H, Endo T, Yano S, Bon EP (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 101:7402.  https://doi.org/10.1016/j.biortech.2010.05.008 CrossRefGoogle Scholar
  9. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896.  https://doi.org/10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  10. Gang C, Xin Z, Simmons B et al (2015) Theory, practice and prospects of X-ray and neutron scattering for lignocellulosic biomass characterization: towards understanding biomass pretreatment. Energy Environ Sci 8:436–455.  https://doi.org/10.1039/C4EE03147D CrossRefGoogle Scholar
  11. Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18.  https://doi.org/10.1016/j.biortech.2008.05.027 CrossRefGoogle Scholar
  12. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807.  https://doi.org/10.1126/science.1137016 CrossRefGoogle Scholar
  13. Hua X, Kaliaguine S, Kokta BV, Adnot A (1993) Surface analysis of different wood. Wood Sci Technol 27:449–459.  https://doi.org/10.1007/BF00193868 CrossRefGoogle Scholar
  14. Huang HJ, Yuan XZ (2015) Recent progress in the direct liquefaction of typical biomass. Prog Energy Combust Sci 49:59–80.  https://doi.org/10.1016/j.pecs.2015.01.003 CrossRefGoogle Scholar
  15. Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulose digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122.  https://doi.org/10.1002/bit.21408 CrossRefGoogle Scholar
  16. Ji G, Gao C, Xiao W, Han L (2016) Mechanical fragmentation of corncob at different plant scales: impact and mechanism on microstructure features and enzymatic hydrolysis. Bioresource Technol 205:159–165.  https://doi.org/10.1016/j.biortech.2016.01.029 CrossRefGoogle Scholar
  17. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729.  https://doi.org/10.1021/ie801542g CrossRefGoogle Scholar
  18. Li Q, Renneckar S (2011) Supramolecular structure characterization of molecularly thin cellulose i nanoparticles. Biomacromol 12:650–659.  https://doi.org/10.1021/bm101315y CrossRefGoogle Scholar
  19. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467.  https://doi.org/10.1016/j.pecs.2012.03.002 CrossRefGoogle Scholar
  20. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686.  https://doi.org/10.1016/j.biortech.2004.06.025 CrossRefGoogle Scholar
  21. Pan H, Shupe TF, Hse CY (2007) Characterization of liquefied wood residues from different liquefaction conditions. J Appl Polym Sci 105:3740–3746.  https://doi.org/10.1002/app.26435 CrossRefGoogle Scholar
  22. Poletto M, Zattera AJ, Forte MMC (2012) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour Technol 109:148–153.  https://doi.org/10.1016/j.biortech.2011.11.122 CrossRefGoogle Scholar
  23. Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crop Prod 23:1–8.  https://doi.org/10.1016/j.indcrop.2005.01.006 CrossRefGoogle Scholar
  24. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794.  https://doi.org/10.1177/004051755902901003 CrossRefGoogle Scholar
  25. Shi F, Xiang H, Li Y (2015) Combined pretreatment using ozonolysis and ball milling to improve enzymatic saccharification of corn straw. Bioresour Technol 179:444–451.  https://doi.org/10.1016/j.biortech.2014.12.063 CrossRefGoogle Scholar
  26. Si X, Lu F, Chen J et al (2017) A strategy for generating highquality cellulose and lignin simultaneously from woody biomass. Green Chem 19:4849–4857.  https://doi.org/10.1039/C7GC02492D CrossRefGoogle Scholar
  27. Silva GG, Couturier M, Berrin JG, Buléon A, Rouau X (2012) Effects of grinding processes on enzymatic degradation of wheat straw. Bioresour Technol 103:192–200.  https://doi.org/10.1016/j.biortech.2011.09.073 CrossRefGoogle Scholar
  28. Stewart D, Wilson HM, Hendra PJ, Hendra PJ (1995) Fouriertransform infrared and Raman spectroscopic study of biochemical and chemical treatments of oak wood. J Agric Food Chem 43:2219–2225.  https://doi.org/10.1021/jf00056a047 CrossRefGoogle Scholar
  29. Thomas LH, Forsyth VT, Šturcová A, Kennedy CJ, May RP et al (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161:465–476.  https://doi.org/10.1104/pp.112.206359 CrossRefGoogle Scholar
  30. Xu JM, Jiang JC, Chungyun H (2012) Renewable chemical feedstocks from integrated liquefaction processing of lignocellulosic materials using microwave energy. Green Chem 14:2821–2830.  https://doi.org/10.1039/C2GC35805K CrossRefGoogle Scholar
  31. Yang Y, Ji G, Xiao W, Han L (2014) Changes to the physicochemical characteristics of wheat straw by mechanical ultrafine grinding. Cellulose 21:3257–3268.  https://doi.org/10.1007/s10570-014-0381-5 CrossRefGoogle Scholar
  32. Yat SC, Berger A, Shonnard DR (2008) Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass. Bioresour Technol 99:3855–3863.  https://doi.org/10.1016/j.biortech.2007.06.046 CrossRefGoogle Scholar
  33. Yeh AI, Huang YC, Chen SH (2010) Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohyd Polym 79:192–199.  https://doi.org/10.1016/j.carbpol.2009.07.049 CrossRefGoogle Scholar
  34. Yelle DJ, Ralph J, Frihart CR (2010) Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy. Magn Reson Chem 46:508–551.  https://doi.org/10.1002/mrc.2201 CrossRefGoogle Scholar
  35. Yu Y, Koljonen K, Paulapuvo H, Stenius P (2002) Surface chemical composition of some non-wood pulps. Ind Crops Prod 15:123–130.  https://doi.org/10.1016/S0926-6690(01)00102-9 CrossRefGoogle Scholar
  36. Zhang Q, Benoit M, Vigier KDO, Barrault J, Jégou G, Philippe M et al (2013a) Pretreatment of microcrystalline cellulose by ultrasounds: effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. Green Chem 15:963–969.  https://doi.org/10.1039/C3GC36643J CrossRefGoogle Scholar
  37. Zhang Q, Zhang P, Pei ZJ, Wang D (2013b) Relationships between cellulosic biomass particle size and enzymatic hydrolysis sugar yield: analysis of inconsistent reports in the literature. Renew Energy 60:127–136.  https://doi.org/10.1016/j.renene.2013.04.012 CrossRefGoogle Scholar
  38. Zhang J, Wang Y, Zhang L (2014) Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour Technol 151:402–405.  https://doi.org/10.1016/j.biortech.2013.10.009 CrossRefGoogle Scholar
  39. Zhao X, Chen J, Chen F, Wang X, Zhu Q, Ao Q (2013) Surface characterization of corn stalk superfine powder studied by FTIR and XRD. Colloids Surf B 104:207–212.  https://doi.org/10.1016/j.colsurfb.2012.12.003 CrossRefGoogle Scholar
  40. Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002.  https://doi.org/10.1016/j.biortech.2009.11.007 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Qiaolong Zhai
    • 1
    • 2
    • 3
    • 4
  • Fanglin Li
    • 1
    • 2
    • 3
    • 4
  • Fei Wang
    • 1
    • 2
    • 3
    • 4
  • Junfeng Feng
    • 1
    • 2
    • 3
    • 4
  • Jianchun Jiang
    • 1
    • 2
    • 3
    • 4
  • Junming Xu
    • 1
    • 2
    • 3
    • 4
    • 5
    Email author
  1. 1.Institute of Chemical Industry of Forest Products, Chinese Academy of ForestryNanjingChina
  2. 2.Key Laboratory of Biomass Energy and MaterialNanjingChina
  3. 3.National Engineering Laboratory for Biomass Chemical UtilizationNanjingChina
  4. 4.Key and Open Laboratory on Forest Chemical EngineeringSFANanjingChina
  5. 5.Co-Innovation Center of Efficient Processing and Utilization of Forest ResourcesNanjing Forestry UniversityNanjingChina

Personalised recommendations