Advertisement

Cellulose

, Volume 26, Issue 5, pp 3387–3399 | Cite as

Polypyrrole@metal-organic framework (UIO-66)@cotton fabric electrodes for flexible supercapacitors

  • Chuanjie Zhang
  • Jiaxin Tian
  • Weida Rao
  • Bin Guo
  • Lingling Fan
  • Weilin Xu
  • Jie XuEmail author
Original Research
  • 451 Downloads

Abstract

Metal-organic frameworks (MOFs) are recently attracting more and more interests as supercapacitor electrode materials. However, their low conductivity largely thwarts their capacitance performance. Herein, fabric electrodes for flexible supercapacitors were successfully fabricated by depositing polypyrrole (PPy) nanotubes and Zr-based MOF (UiO-66) particles on cotton fabrics. The PPy nanotubes could serve as conductive connectors to bridge the UIO-66 particles due to their superior conductivity with one-dimensional structure. The conductivity of the PPy@UIO-66@cotton fabric electrode was increased to 14.29 S cm−1. A specific capacitance of 565 F g−1 at a current density of 0.8 mA cm−2 was obtained for the PPy@UIO-66@cotton fabric electrode. In addition, the proposed fabric electrode exhibited good cycling stability with capacitance retention of 90% after 500 charge–discharge cycles and excellent rate capability. This study confirmed the combination of MOFs and PPy nanotubes has great application prospect in fabric-based flexible supercapacitors.

Keywords

Metal-organic frameworks Polypyrrole Fabric electrodes Flexible supercapacitors 

Notes

Acknowledgments

This work was supported by the Scientific Innovation Team Project of the Education Department of Hubei Province (No. T201507), Wuhan Science and Technology Bureau (No. 2016010101010016), the Natural Science Foundation of China (Nos. 51703170 and 21673167) and the National Key Research and Development Program of China (No. 2016YFA0101102).

References

  1. Abid HR, Ang HM, Wang S (2012) Effects of ammonium hydroxide on the structure and gas adsorption of nanosized Zr-MOFs (UiO-66). Nanoscale 4:3089–3094CrossRefPubMedGoogle Scholar
  2. Alekseeva E, Bober P, Trchová M, Šeděnková I, Prokeš J, Stejskal J (2015) The composites of silver with globular or nanotubular polypyrrole: The control of silver content. Synth Met 209:105–111CrossRefGoogle Scholar
  3. Allison L, Hoxie S, Andrew TL (2017) Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications. Chem Commun 53:7182–7193CrossRefGoogle Scholar
  4. Bo Y, Zhao Y, Cai Z, Bahi A, Liu C, Ko F (2018) Facile synthesis of flexible electrode based on cotton/polypyrrole/multi-walled carbon nanotube composite for supercapacitors. Cellulose 25:4079–4091CrossRefGoogle Scholar
  5. Deep A, Bhardwaj SK, Paul AK, Kim KH, Kumar P (2015) Surface assembly of nano-metal organic framework on amine functionalized indium tin oxide substrate for impedimetric sensing of parathion. Biosens Bioelectron 65:226–231CrossRefPubMedGoogle Scholar
  6. Dhara B, Nagarkar SS, Kumar J, Kumar V, Jha PK, Ghosh SK, Nair S, Ballav N (2016) Increase in Electrical Conductivity of MOF to Billion-Fold upon Filling the Nanochannels with Conducting Polymer. J Phys Chem Lett 7:2945–2950CrossRefPubMedGoogle Scholar
  7. Dubal DP, Chodankar NR, Kim D-H, Gomez-Romero P (2018) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47:2065–2129CrossRefPubMedGoogle Scholar
  8. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRefGoogle Scholar
  9. Fu D, Zhou H, Zhang X, Han G, Chang Y, Li H (2016) Flexible solid-state supercapacitor of metal-organic framework coated on carbon nanotube film interconnected by electrochemically-codeposited PEDOT-GO. Chemistryselect 1:285–289CrossRefGoogle Scholar
  10. Gholami M, Nia PM, Narimani L, Sokhakian M, Alias Y (2016) Flexible supercapacitor based on electrochemically synthesized pyrrole formyl pyrrole copolymer coated on carbon microfibers. Appl Surface Sci 378:259–269CrossRefGoogle Scholar
  11. Heinze J, Frontana-Uribe BA, Ludwigs S (2010) Electrochemistry of conducting polymers–persistent models and new concepts. Chem Rev 110:4724–4771CrossRefGoogle Scholar
  12. Huang G, Liu L, Rui W, Jing Z, Sun X, Peng H (2016a) Smart color-changing textile with high contrast based on single-sided conductive fabric. J Mater Chem C 4:7589–7594CrossRefGoogle Scholar
  13. Huang Q, Wang D, Zheng Z (2016b) Textile-Based Electrochemical Energy Storage Devices. Adv Energy Mater 6:1600783CrossRefGoogle Scholar
  14. Huang L, Rao W, Fan L, Xu J, Bai Z, Xu W, Bao H (2018) Paper Electrodes Coated with Partially-Exfoliated Graphite and Polypyrrole for High-Performance Flexible Supercapacitors. Polymers 10:135CrossRefPubMedCentralGoogle Scholar
  15. Katz MJ, Brown ZJ, Colon YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK (2013) A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem Commun 49:9449–9451CrossRefGoogle Scholar
  16. Kaur R, Kim KH, Paul AK, Deep A (2016) Recent Advances in the Photovoltaic Applications of Coordination Polymers and Metal Organic Frameworks. J Mater Chem A 4:3991–4002CrossRefGoogle Scholar
  17. Kopecká J, Kopecký D, Vrnata M, Fitl P, Stejskal J, Trchova M, Bober P, Moravkova Z, Prokes J, Sapurina I (2014) Polypyrrole nanotubes: mechanism of formation. RSC Adv 4:1551–1558CrossRefGoogle Scholar
  18. Kyung Min C, Hyung Mo J, Jung Hyo P, Yue-Biao Z, Jeung KuK, Yaghi OM (2014) Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano 8:7451–7457CrossRefGoogle Scholar
  19. Lai L, Zhao Y, Ying S, Li L, Ma Z, Pan L (2018) Hierarchically porous N-doped carbon derived from supramolecular assembled polypyrrole as a high performance supercapacitor electrode material. RSC Adv 8:18714–18722CrossRefGoogle Scholar
  20. Lee DY, Yoon SJ, Shrestha NK, Lee SH, Ahn H, Han SH (2012) Unusual energy storage and charge retention in Co-based metal-organic-frameworks. Microporous Mesoporous Mater 153:163–165CrossRefGoogle Scholar
  21. Li S, Huang D, Yang J, Zhang B, Zhang X, Yang G, Wang M, Shen Y (2014) Freestanding bacterial cellulose-polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9:309–317CrossRefGoogle Scholar
  22. Li Y, Bober P, Trchová M, Stejskal J (2017) Polypyrrole prepared in the presence of methyl orange and ethyl orange: nanotubes versus globules in conductivity enhancement. J Mater Chem C 5:4236–4245CrossRefGoogle Scholar
  23. Li X, Cai J, Lu X, Shi Y, Gong D, Su D, Zhang D (2018) Stretchable conductors based on three-dimensional microcoils for tunable radio-frequency antennas. J Mater Chem C 6:4191–4200CrossRefGoogle Scholar
  24. Liu Y, Liu M (2017) Conductive carboxylated styrene butadiene rubber composites by incorporation of polypyrrole-wrapped halloysite nanotubes. Compos Sci Technol 143:56–66CrossRefGoogle Scholar
  25. Liu F, Yuan Y, Li L, Shang S, Yu X, Zhang Q, Jiang S, Wu Y (2015) Synthesis of polypyrrole nanocomposites decorated with silver nanoparticles with electrocatalysis and antibacterial property. Compos B Eng 69:232–236CrossRefGoogle Scholar
  26. Lu W, Wei Z, Gu ZY, Liu TF, Park J, Tian J, Zhang M, Zhang Q, Rd GT (2014) Tuning the structure and function of metal-organic frameworks via linker design. Chem Soc Rev 43:5561–5593CrossRefPubMedGoogle Scholar
  27. Lund A, Velden NM, Persson N-K, Hamedi MM, Müller C (2018) Electrically conducting fibres for e-textiles: An open playground for conjugated polymers and carbon nanomaterials. Mat Sci Eng R 126:1–29CrossRefGoogle Scholar
  28. Meng G, Li L, Song Y (2017a) Inkjet printing wearable electronic devices. J Mater Chem C 5:2971–2993CrossRefGoogle Scholar
  29. Meng Q, Cai K, Chen Y, Chen L (2017b) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285CrossRefGoogle Scholar
  30. Nyström G, Razaq A, Strømme M, Nyholm L, Mihranyan A (2009) Ultrafast All-Polymer Paper-Based Batteries. Nano Lett 9:3635–3639CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pan L, Qiu H, Dou C, Li Y, Pu L, Xu J, Shi Y (2010) Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage. Int J Mol Sci 11:2636–2657CrossRefPubMedPubMedCentralGoogle Scholar
  32. Park S, Jayaraman S (2003) Smart textiles: Wearable electronic systems. MRS Bull 28:585–591CrossRefGoogle Scholar
  33. Peng S, Fan L, Wei C, Bao H, Zhang H, Xu W, Xu J (2016) Polypyrrole/nickel sulfide/bacterial cellulose nanofibrous composite membranes for flexible supercapacitor electrodes. Cellulose 23:2639–2651CrossRefGoogle Scholar
  34. Peng S, Fan L, Wei C, Liu X, Zhang H, Xu W, Jie X (2017) Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes. Carbohydr Polym 157:344–352CrossRefPubMedGoogle Scholar
  35. Piscopo CG, Polyzoidis A, Schwarzer M, Loebbecke S (2015) Stability of UiO-66 under acidic treatment: Opportunities and limitations for post-synthetic modifications. Micropor Mesopor Mat 208:30–35CrossRefGoogle Scholar
  36. Qi K, Hou R, Zaman S, Qiu Y, Xia BY, Duan H (2018) Construction of Metal-Organic Framework/Conductive Polymer Hybrid for All-Solid-State Fabric Supercapacitor. ACS Appl Mater Interfaces 10:18021–18028CrossRefPubMedGoogle Scholar
  37. Senthilkumar ST, Selvan RK, Melo JS (2013) Redox additive/active electrolytes: a novel approach to enhance the performance of supercapacitors. J Mater Chem A 1:12386–12394CrossRefGoogle Scholar
  38. Shao L, Wang Q, Ma Z, Ji Z, Wang X, Song D, Liu Y, Wang N (2018) A high-capacitance flexible solid-state supercapacitor based on polyaniline and Metal-Organic Framework (UiO-66) composites. J Power Sources 379:350–361CrossRefGoogle Scholar
  39. Sheberla D, Bachman JC, Elias JS, Sun CJ, Shao-Horn Y, Dinca M (2017) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16:220–224CrossRefPubMedGoogle Scholar
  40. Shim BS, Chen W, Doty C, Xu C, Kotov NA (2008) Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett 8:4151–4157CrossRefPubMedGoogle Scholar
  41. Stejskal J, Trchová M (2018) Conducting polypyrrole nanotubes: a review. Chem Papers 72:1563–1595CrossRefGoogle Scholar
  42. Stock N, Biswas S (2012) Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem Rev 112:933–969CrossRefPubMedGoogle Scholar
  43. Sundriyal S, Kaur H, Bhardwaj SK, Mishra S, Kim KH, Deep A (2018) Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coordin Chem Rev 369:15–38CrossRefGoogle Scholar
  44. Tan Y, Zhang W, Gao Y, Wu J, Tang B (2015) Facile synthesis and supercapacitive properties of Zr-metal organic frameworks (UiO-66). RSC Adv 5:17601–17605CrossRefGoogle Scholar
  45. Tao X (2006) Wearable electronics and photonics. Taylor & Francis Group, New York.Google Scholar
  46. Upadhyay J, Kumar A, Gogoi B, Buragohain AK (2015) Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in-situ reduction process. Mater Sci Eng C Mater Biol Appl 54:8–13CrossRefPubMedGoogle Scholar
  47. Vellingiri K, Szulejko JE, Kumar P, Kwon EE, Kim KH, Deep A, Boukhvalov DW, Brown RJC (2016) Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions. Sci Rep 6:27813CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wang D, Li YX, Shi Z, Qin HL, Wang L, Pei XF, Jin J (2010) Spontaneous Growth of Free-Standing Polypyrrole Films at an Air/Ionic Liquid Interface. Langmuir 26:14405–14408CrossRefPubMedGoogle Scholar
  49. Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Li H, Chen Y, Wang B (2015) Flexible Solid-State Supercapacitor Based on a Metal-Organic Framework Interwoven by Electrochemically-Deposited PANI. J Am Chem Soc 137:4920–4923CrossRefPubMedGoogle Scholar
  50. Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B (2016) Metal-organic frameworks for energy storage: Batteries and supercapacitors. Coordin Chem Rev 307:361–381CrossRefGoogle Scholar
  51. Wei Z, Lin S, Qiao L, Song C, Fei W, Xiao-Ming T (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26:5310–5336CrossRefGoogle Scholar
  52. Wei C, Xu Q, Chen Z, Rao W, Fan L, Ye Y, Bai Z, Xu J (2017) An all-solid-state yarn supercapacitor using cotton yarn electrodes coated with polypyrrole nanotubes. Carbohydr Polym 169:50–57CrossRefPubMedGoogle Scholar
  53. Xia W, Zou R, An L, Xia D, Guo S (2015) Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8:1837–1866CrossRefGoogle Scholar
  54. Xu J, Zhu L, Bai Z, Liang G, Liu L, Fang D, Xu W (2013) Conductive polypyrrole-bacterial cellulose nanocomposite membranes as flexible supercapacitor electrode. Org Electron 14:3331–3338CrossRefGoogle Scholar
  55. Xu J, Wang D, Fan L, Yuan Y, Wei W, Liu R, Gu S, Xu W (2015a) Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Org Electron 26:292–299CrossRefGoogle Scholar
  56. Xu J, Wang D, Yuan Y, Wei W, Duan L, Wang L, Bao H, Xu W (2015b) Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application. Org Electron 24:153–159CrossRefGoogle Scholar
  57. Xu J, Wang D, Yuan Y, Wei W, Gu S, Liu R, Wang X, Liu L, Xu W (2015c) Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanoparticles as template. Cellulose 22:1355–1363CrossRefGoogle Scholar
  58. Xu Q, Fan L, Yuan Y, Wei C, Bai Z, Xu J (2016) All-solid-state yarn supercapacitors based on hierarchically structured bacterial cellulose nanofiber-coated cotton yarns. Cellulose 23:3987–3997CrossRefGoogle Scholar
  59. Xu X, Tang J, Qian H, Hou S, Bando Y, Msa H, Pan L, Yamauchi Y (2017) Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors. ACS Appl Mater Interfaces 9:38737–38744CrossRefPubMedGoogle Scholar
  60. Xu Q, Wei C, Fan L, Rao W, Xu W, Liang H, Xu J (2018) Polypyrrole/titania-coated cotton fabrics for flexible supercapacitor electrodes. Appl Surface Sci 460:84–91CrossRefGoogle Scholar
  61. Yun TG, Bi H, Kim D, Hyun S, Han SM (2015) Polypyrrole-MnO2-Coated Textile-Based Flexible-Stretchable Supercapacitor with High Electrochemical and Mechanical Reliability. ACS Appl Mater Interfaces 7:9228–9234CrossRefPubMedGoogle Scholar
  62. Zhang C, Zhou G, Rao W, Fan L, Xu W, Jie X (2018) A simple method of fabricating nickel-coated cotton fabrics for wearable strain sensor. Cellulose 25:4859–4870CrossRefGoogle Scholar
  63. Zhao Y, Liu B, Pan L, Yu G (2013) 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ Sci 6:2856–2870CrossRefGoogle Scholar
  64. Zhou HC, Long JR, Yaghi OM (2012) Introduction to Metal-Organic Frameworks. Chem Rev 112:673–674CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Chuanjie Zhang
    • 1
  • Jiaxin Tian
    • 1
  • Weida Rao
    • 1
  • Bin Guo
    • 2
  • Lingling Fan
    • 3
  • Weilin Xu
    • 1
  • Jie Xu
    • 1
    Email author
  1. 1.State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technology, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Materials Science and EngineeringWuhan Textile UniversityWuhanChina
  2. 2.College of ScienceNanjing Forestry UniversityNanjingChina
  3. 3.College of Textile Science and EngineeringWuhan Textile UniversityWuhanChina

Personalised recommendations