, Volume 26, Issue 5, pp 2913–2940 | Cite as

A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell

  • Anwar J. Sayyed
  • Niteen A. Deshmukh
  • Dipak V. PinjariEmail author
Review Paper


It is essential for textile manufacturing industries to invent new resources, composites and industrial technologies, which are environmentally acceptable and can fulfill the consumer necessities. Therefore, in the recent years, large number of research is focused on optimizing and modifying the fibre manufacturing processes. The recent advances in technology have allowed modifying these processes through various techniques and novel raw materials/additives to manufacture the fibres. Among the various fibre regeneration processes, the NMMO based lyocell process has numerous advantages over conventional rayon fibres and it has great potential to fulfil the environmental and customer requirements. The present review delivers a complete account of all the six types of cellulose regeneration processes namely viscose, cellulose acetate, cuprammonium, LiCl/DMAc as well as lyocell processes based on ionic liquid or NMMO. Additionally, the review considers latest developments with process technology, cellulose swelling and dissolution phenomena, factors affecting the lyocell process and future prospects of the lyocell fibres.

Graphical abstract


Fibre regeneration process Cellulose dissolution Lyocell Viscose Cuprammonium LiCl/DMAc 



The authors are grateful to Pulp and Fibre Innovation Centre (PFIC)—A Unit of Grasim Industries Ltd. Aditya Birla Group Company for funding the Ph.D. program. We also would like to thank Institute of Chemical Technology (ICT) for academic support.


  1. Agbor VB, Cicek N, Sparling R et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685CrossRefPubMedGoogle Scholar
  2. Alnokta (2009) File: cellulose acetate preparation.png—Wikimedia commons. In: Public domainGoogle Scholar
  3. Alwis P, Taylor J (2001) Tencel A100—a new dimension in lyocell fibres. Melliand Text Int Text Rep 7:56–58Google Scholar
  4. Bikova T, Treimanis A (2002) Problems of the MMD analysis of cellulose by SEC using DMA/LiCl: a review. Carbohydr Polym 48:23–28CrossRefGoogle Scholar
  5. Borbély É (2008) Lyocell, the new generation of regenerated cellulose. Acta Polytech Hung 5:11–18Google Scholar
  6. Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–55CrossRefGoogle Scholar
  7. Cai J, Kimura S, Wada M et al (2008) Cellulose aerogels from aqueous alkali hydroxide-urea solution. Chemsuschem 1:149–154CrossRefPubMedGoogle Scholar
  8. Camper IP, Bott CB (2006) Improvement of an industrial wastewater treatment system at a former viscose rayon plant-results from two-stage biological leachate treatability testing. In: Proceedings of the 79th WEFTEC, Dallas, TX, October 21–25, pp 1830–1845Google Scholar
  9. Cao JH, Zhao JR (2015) Fenton depolymerization of cellulosic biomass in modified cuprammonium solution. BioResources 10:5949–5960CrossRefGoogle Scholar
  10. Cao Y, Wu J, Zhang J et al (2009) Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147:13–21CrossRefGoogle Scholar
  11. Chae DW, Kim BC, Lee WS (2002) Rheological characterization of cellulose solutions in N-methyl morpholine N-oxide monohydrate. J Appl Polym Sci 86:216–222CrossRefGoogle Scholar
  12. Chanzy H (1982) Cellulose-amine oxide systems. Carbohydr Polym 2:229–231CrossRefGoogle Scholar
  13. Chavan RB, Patra AK (2004) Review article: development and processing of lyocell. Indian J Fibre Text Res 29:483–492Google Scholar
  14. Cockroft MR, Fisher L (2012) Process for processing cellulose films or shaped articles. EP2710054A1Google Scholar
  15. Cohen AC (Writer on textile industry), Johnson I, Pizzuto JJ (Joseph J) (2012) J.J. Pizzuto’s Fabric science. Fairchild BooksGoogle Scholar
  16. Collier BJ, Dever M, Petrovan S et al (2000) Rheology of lyocell solutions from different cellulose sources. J Polym Environ 8:151–154CrossRefGoogle Scholar
  17. Cook JG (James G) (1984) Handbook of textile fibres. MerrowGoogle Scholar
  18. Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose part 1: free floating cotton and wood fibres in N-methylmorpholine-N-oxide–water mixtures. In: Macromolecular symposia, vol 244Google Scholar
  19. Cuissinat C, Navard P, Heinze T (2008) Swelling and dissolution of cellulose, Part V: cellulose derivatives fibres in aqueous systems and ionic liquids. Cellulose 15:75–80CrossRefGoogle Scholar
  20. Dawsey TR, Mccormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J Macromol Sci C Polym Rev 30:405–440CrossRefGoogle Scholar
  21. Deo HT (2001) Ecofriendly textile production. Indian J Fibre Text Res 26:61–73Google Scholar
  22. Derecskei B, Derecskei-Kovacs A (2006) Molecular dynamic studies of the compatibility of some cellulose derivatives with selected ionic liquids. Mol Simul 32:109–115CrossRefGoogle Scholar
  23. Duchemin BJ-C (2008) Structure, property and processing relationships of all-cellulose composites. Ph.D. Thesis, University of CanterburyGoogle Scholar
  24. Egal M, Budtova T, Navard P (2007) Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0 °C and the limit of cellulose dissolution. Biomacromol 8:2282–2287CrossRefGoogle Scholar
  25. Ertas Y, Uyar T (2017) Fabrication of cellulose acetate/polybenzoxazine cross-linked electrospun nanofibrous membrane for water treatment. Carbohydr Polym 177:378–387CrossRefPubMedGoogle Scholar
  26. Fink H-P, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NNMO-solutions. Prog Polym Sci 26:1473–1524CrossRefGoogle Scholar
  27. Firgo H, Schuster KC, Suchomel F et al (2006) The functional properties of tencel. Lenzing Ber 85:22–30Google Scholar
  28. Fujii S, Sasaki N, Nakata M (2001) Rheological studies on the phase separation of hydroxypropylcellulose solution systems. J Polym Sci Part B Polym Phys 39:1976–1986CrossRefGoogle Scholar
  29. Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose–NaOH–water gels and comparison with cellulose–N-methylmorpholine-N-oxide–water solutions. Biomacromol 8:424–432CrossRefGoogle Scholar
  30. Ghasemi M, Alexandridis P, Tsianou M (2017a) Cellulose dissolution: insights on the contributions of solvent-induced decrystallization and chain disentanglement. Cellulose 24:571–590CrossRefGoogle Scholar
  31. Ghasemi M, Singapati AY, Tsianou M, Alexandridis P (2017b) Dissolution of semicrystalline polymer fibres: numerical modeling and parametric analysis. AIChE J 63:1368–1383CrossRefGoogle Scholar
  32. Ghasemi M, Tsianou M, Alexandridis P (2017c) Assessment of solvents for cellulose dissolution. Bioresour Technol 228:330–338CrossRefPubMedGoogle Scholar
  33. Goel R, Bitzer ZT, Reilly SM et al (2018) Effect of charcoal in cigarette filters on free radicals in mainstream smoke. Chem Res Toxicol 31:745–751CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gorji M, Bagherzadeh R (2016) Moisture management behaviors of high wicking fabrics composed of profiled fibres. Indian J Fibre Text Res 41:318–324Google Scholar
  35. Gorman-Lewis DJ, Fein JB (2004) Experimental study of the adsorption of an ionic liquid onto bacterial and mineral surfaces. Environ Sci Technol 38:2491–2495CrossRefPubMedGoogle Scholar
  36. Goswami P, Blackburn RS, Taylor J, White P (2009) Dyeing behaviour of lyocell fabric: effect of NaOH pre-treatment. Cellulose 16:481–489CrossRefGoogle Scholar
  37. Hauru LKJ, Hummel M, Michud A, Sixta H (2017) Erratum to: dry jet-wet spinning of strong cellulose filaments from ionic liquid solution (Cellulose, (2014), 21, 6, (4471–4481). Cellulose 24:3109–3110
  38. Hearle JWS, Woodings C (2001) Regenerated cellulose fibres. CRC Press LLC, Woodhead Publishing Ltd, Cambridge, UKGoogle Scholar
  39. Hergert HL, Daul GC (1977) Rayon—a fiber with a future. In: ACS Symposium Series, vol 58, pp 1–11Google Scholar
  40. Hibbert R (2014) What textile fibres are applicable for the layering system for the active ageing?. Elsevier, AmsterdamGoogle Scholar
  41. Hong YK, Chung KH, Lee WS (1998) Structure of regenerated cellulose fibres from DMAc/LiCl solution. Text Res J 68:65–69CrossRefGoogle Scholar
  42. Huber T, Müssig J, Curnow O et al (2012) A critical review of all-cellulose composites. J Mater Sci 47:1171–1186CrossRefGoogle Scholar
  43. Jabbar M, Shaker K (2016) Textile raw materials. Phys Sci Rev 1:101–105CrossRefGoogle Scholar
  44. Jeong JC, Kim WC, Jin SW, Lee SY, Lee SM (2017) Lyocell fiber. US 2017/0121857 A1Google Scholar
  45. Jia B, Yu L, Fu F et al (2014) Preparation of helical fibres from cellulose–cuprammonium solution based on liquid rope coiling. RSC Adv 4:9112–9117CrossRefGoogle Scholar
  46. Jiang G, Huang W, Li L et al (2012) Structure and properties of regenerated cellulose fibres from different technology processes. Carbohydr Polym 87:2012–2018CrossRefGoogle Scholar
  47. Jing H, Liu Z, Li H et al (2007) Solubility of wood-cellulose in LiCl/DMAC solvent system. For Stud China 9:217–220CrossRefGoogle Scholar
  48. Kadolph SJ (2009) Textiles. Pearson, LondonGoogle Scholar
  49. Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol 200:1008–1018CrossRefPubMedGoogle Scholar
  50. Kihlman M (2012) Dissolution of cellulose for textile fibre applications. DIVA, New YorkGoogle Scholar
  51. Kim DB, Jo SM, Lee WS, Pak JJ (2004) Physical agglomeration behavior in preparation of cellulose-N-methyl morpholine N-oxide hydrate solutions by simple mixing. J Appl Polym Sci 93:1687–1697CrossRefGoogle Scholar
  52. Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66CrossRefGoogle Scholar
  53. Kozłowski RM, Mackiewicz-Talarczyk M (2012) Introduction to natural textile fibres. Handb Nat Fibres 1:1–8Google Scholar
  54. Krässig H, Schurz J, Steadman RG, Schliefer K, Albrecht W, Mohring M, Schlosser H (2004) Cellulose. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, KGaA, WeinheimGoogle Scholar
  55. Le Moigne N, Jardeby K, Navard P (2010) Structural changes and alkaline solubility of wood cellulose fibres after enzymatic peeling treatment. Carbohydr Polym 79:325–332CrossRefGoogle Scholar
  56. Le Moigne N, Navard P (2010) Dissolution mechanisms of wood cellulose fibres in NaOH–water. Cellulose 17:31–45CrossRefGoogle Scholar
  57. Li Y, Liu X, Zhuang X et al (2016) Rheological behavior and spinnability of ethylamine hydroxyethyl chitosan/cellulose co-solution in N-methylmorpholine-N-oxide system. Fibres Polym 17:778–788CrossRefGoogle Scholar
  58. Lindman B, Medronho B, Theliander H (2015) Editorial: cellulose dissolution and regeneration: systems and interactions. Nord Pulp Pap Res J 30:2–3CrossRefGoogle Scholar
  59. Liu Y, Shi L, Cheng D, He Z (2016) Dissolving pulp market and technologies: Chinese prospective—a mini-review. BioResources 11:7902–7916Google Scholar
  60. Macfarlane K (1997) Nonwovens application of lyocell fibre. Chem Fibers Int 47(4):328–332Google Scholar
  61. Mäki-Arvela P, Anugwom I, Virtanen P et al (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 32:175–201CrossRefGoogle Scholar
  62. Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid Interface Sci 19:32–40CrossRefGoogle Scholar
  63. Mehrabi F, Shamspur T, Mostafavi A et al (2017) Synthesis of cellulose acetate nanofibres and its application in the release of some drugs. Nanomed Res J 2:199–207Google Scholar
  64. Meister F, Kosan B (2015) A tool box for characterization of pulps and cellulose dopes in Lyocell technology. Nord Pulp Pap Res J 30:112–120CrossRefGoogle Scholar
  65. Mohd N, Draman SFS, Salleh MSN, Yusof NB (2017) Dissolution of cellulose in ionic liquid: a review. AIP Conf Proc 1809:020035CrossRefGoogle Scholar
  66. Morabito JA, Holman MR, Ding YS et al (2017) The use of charcoal in modified cigarette filters for mainstream smoke carbonyl reduction. Regul Toxicol Pharmacol 86:117–127CrossRefPubMedPubMedCentralGoogle Scholar
  67. Mordor Intelligence (2018) Viscose staple fiber market | trend | price | analysis (2018–2023). Accessed 8 Aug 2018
  68. Nagarkar S, Ojha R, Mankad J et al (2006) Measuring the elongation viscosity of lyocell using a semi-hyperbolic die. Rheol Acta 45:260–267CrossRefGoogle Scholar
  69. Nakasone K, Ikematsu S, Kobayashi T (2016) Biocompatibility evaluation of cellulose hydrogel film regenerated from sugar cane bagasse waste and its in vivo behavior in mice. Ind Eng Chem Res 55:30–37CrossRefGoogle Scholar
  70. Navard P, Cuissinat C (2006) Cellulose swelling and dissolution as a tool to study the fibre structure. In: 7th international symposium “alternative cellulose—manufacturing, forming, properties”, p 7Google Scholar
  71. Nomura H (2004) Inserting paper for glass-like sheet materials. EP1452643B1Google Scholar
  72. Okano T, Sarko A (1985) Mercerization of cellulose. II. Alkali–cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332CrossRefGoogle Scholar
  73. Olsson C, Westm G (2013) Direct dissolution of cellulose: background, means and applications. Cellul - Fundam Asp, LondonGoogle Scholar
  74. Opietnik M, Goldhalm G, Firgo H (2018) Use of a lyocell fiber. US 2018 / 0258375 A1.Google Scholar
  75. Parviainen A, Wahlström R, Liimatainen U et al (2015) Sustainability of cellulose dissolution and regeneration in 1,5-diazabicyclo[4.3.0]non-5-enium acetate: a batch simulation of the IONCELL-F process. RSC Adv 5:69728–69737CrossRefGoogle Scholar
  76. Paulitz J, Sigmund I, Kosan B, Meister F (2017) Lyocell fibres for textile processing derived from organically grown hemp. Proc Eng 200:260–268CrossRefGoogle Scholar
  77. Peng H, Dai G, Wang S, Xu H (2017) The evolution behavior and dissolution mechanism of cellulose in aqueous solvent. J Mol Liq 241:959–966CrossRefGoogle Scholar
  78. Periyasamy AP, Khanum MR (2015) Technical articles effect of fibrillation on pilling tendency of lyocell fibre. Text today, Tech Artic Issue April 2–6, 2012Google Scholar
  79. Petrie CJS (1995) Extensional flow—a mathematical perspective. Rheol Acta 34:12–26CrossRefGoogle Scholar
  80. Petrovan S, Collier JR, Morton GH (2000) Rheology of cellulosic N-methylmorpholine oxide monohydrate solutions. J Appl Polym Sci 77:1369–1377CrossRefGoogle Scholar
  81. Petrovan S, Collier JR, Negulescu II (2001) Rheology of cellulosic N-methylmorpholine oxide monohydrate solutions of different degrees of polymerization. J Appl Polym Sci 79:396–405CrossRefGoogle Scholar
  82. Pinkert A, Marsh KN, Pang S (2010) Reflections on the solubility of cellulose. Ind Eng Chem Res 49:11121–11130CrossRefGoogle Scholar
  83. Pocien R, Žemaitaitien R, Vitkauskas A (2004) Mechanical properties and a physical–chemical analysis of acetate yarns. Mater Sci 10:1–5Google Scholar
  84. Qi G, Xiong L, Wang B et al (2017) Improvement and characterization in enzymatic hydrolysis of regenerated wheat straw dissolved by LiCl/DMAc solvent system. Appl Biochem Biotechnol 181:177–191CrossRefPubMedGoogle Scholar
  85. Rabideau BD, Ismail AE (2015) Effect of water content in N-methylmorpholine N-oxide/cellulose solutions on thermodynamics, structure, and hydrogen bonding. J Phys Chem B 119:15014–15022CrossRefPubMedGoogle Scholar
  86. Ramamoorthy SK, Skrifvars M, Persson A (2015) A review of natural fibres used in biocomposites: plant, animal and regenerated cellulose fibres. Polym Rev 55:107–162CrossRefGoogle Scholar
  87. Ramos LA, Morgado DL, Gessner F et al (2011) A physical organic chemistry approach to dissolution of cellulose: effects of cellulose mercerization on its properties and on the kinetics of its decrystallization. Arkivoc 7:416–425Google Scholar
  88. Reportbuyer (2017) Cellulose acetate market size, forecast and trend analysis, 2014–2024. In: ReportbuyerGoogle Scholar
  89. Rojas OJ (2016) Cellulose chemistry and properties: fibres, nanocelluloses and advanced materials. Spinger, RaleighCrossRefGoogle Scholar
  90. Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose. Prog Polym Sci 26:1763–1837CrossRefGoogle Scholar
  91. Sayyed AJ, Mohite LV, Deshmukh NA, Pinjari DV (2018a) Effect of ultrasound treatment on swelling behavior of cellulose in aqueous N-methyl-morpholine-N-oxide solution. Ultrason Sonochem 49:161–168CrossRefPubMedGoogle Scholar
  92. Sayyed AJ, Mohite LV, Deshmukh NA, Pinjari DV (2018b) Structural characterization of cellulose pulp in aqueous NMMO solution under the process conditions of lyocell slurry. Carbohydr Polym 206:220–228CrossRefPubMedGoogle Scholar
  93. Schweizer T (2000) The uniaxial elongational rheometer RME—six years of experience. Rheol Acta 39:428–443CrossRefGoogle Scholar
  94. Seavey KC, Ghosh I, Davis RM, Glasser WG (2001) Continuous cellulose fibre-reinforced cellulose ester composites. I. Manufacturing options. Cellulose 8:149–159CrossRefGoogle Scholar
  95. Sen S, Martin JD, Argyropoulos DS (2013) Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustain Chem Eng 1:858–870CrossRefGoogle Scholar
  96. Shen L, Worrell E, Patel MK (2010) Environmental impact assessment of man-made cellulose fibres. Resour Conserv Recycl 55:260–274CrossRefGoogle Scholar
  97. Shirin J, Hummel M, Michud A (2015) Submit your paper as a PDF file without page numbers by spinning use rheological requirements for continuous filament of times roman font throughout point for the title. Liq Solut 23:13–20Google Scholar
  98. Si XP, Zhang SJ, Chen Y et al (2015) The research development of cellulose acetate fibre and cellulose acetate nanofibre used as filtering materials. Key Eng Mater 671:279–284CrossRefGoogle Scholar
  99. Singh Z, Bhalla S (2017) Toxicity of synthetic fibres & health. Adv Res Text Eng 2(1):1012Google Scholar
  100. Sixta H (2015) Ioncell-F: a high-strength regenerated cellulose fibre. Nord Pulp Pap Res J 30:043–057CrossRefGoogle Scholar
  101. Spiegelberg SH, McKinley GH (1996) Stress relaxation and elastic decohesion of viscoelastic polymer solutions in extensional flow. J Nonnewton Fluid Mech 67:49–76CrossRefGoogle Scholar
  102. Spiegelberg SH, Ables DC, McKinley GH (1996) The role of end-effects on measurements of extensional viscosity in filament stretching rheometers. J Nonnewton Fluid Mech 64:229–267CrossRefGoogle Scholar
  103. Spinu M, Dos Santos N, Le Moigne N, Navard P (2011) How does the never-dried state influence the swelling and dissolution of cellulose fibres in aqueous solvent? Cellulose 18:247–256CrossRefGoogle Scholar
  104. Sun N (2010) Dissolution and processing of cellulosic materials with ionic liquids: fundamentals and applications. The University of AlabamaGoogle Scholar
  105. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRefPubMedGoogle Scholar
  106. Vagt U (2010) Cellulose dissolution and processing with ionic liquids. In: Wasserscheid P, Stark A (eds) Handbook of green chemistry. Ionic Liquids, vol 6. Wiley, KGaA, WeinheimGoogle Scholar
  107. Vigneswaran C, Ananthasubramanian M, Kandhavadivu P (2014) Bioprocessing of textiles, illustrate. WPI India, New DehliCrossRefGoogle Scholar
  108. Wald S, Wilke CR, Blanch HW (1984) Kinetics of the enzymic hydrolysis of cellulose. Biotechnol Bioeng 26:221–230CrossRefPubMedGoogle Scholar
  109. Wanasekara ND, Michud A, Zhu C et al (2016) Deformation mechanisms in ionic liquid spun cellulose fibres. Polymer (Guildf) 99:222–230CrossRefGoogle Scholar
  110. Wang X, Li Q, Di Y, Xing G (2012) Preparation and properties of flame-retardant viscose fibre containing phosphazene derivative. Fibres Polym 13:718–723CrossRefGoogle Scholar
  111. Watabe Y, Suzuki Y, Koike S et al (2018) Cellulose acetate, a new candidate feed supplement for ruminant animals: in vitro evaluations. J Dairy Sci 101:1–10CrossRefGoogle Scholar
  112. Watkins S (1999) The use of tencel in pure and in blend with wool in textiles. DWI Rep 99:390–394Google Scholar
  113. Woodings C (2001) Regenerated cellulose fibres. Taylor & Francis, LondonCrossRefGoogle Scholar
  114. Woodings C (2003) Regenerated cellulose fibres. Woodhead Publishing Ltd and CRC Press LLC, CambridgeGoogle Scholar
  115. Xu Y, Qiu C, Ma F et al (2017) Preparation method of novel plant protein viscose fibre. Faming Zhuanli Shenqing (2017), CN 1063508Google Scholar
  116. Yamane C, Abe K, Satho M, Miyamoto H (2015) Dissolution of cellulose nanofibres in aqueous sodium hydroxide solution. Nord Pulp Pap Res J 30:92–98CrossRefGoogle Scholar
  117. Yang JZ, Liu GM, Sun DP (2014) Hemodialysis membrane prepared from bacterial cellulose/lithium chloride/N,N-dimethylacetamide solution. Adv Mater Res 1048:395–399CrossRefGoogle Scholar
  118. Young R (2017) Global trends in dissolving pulp. Spectrum 36(2):52–53Google Scholar
  119. Zhang W, Okubayashi S, Badura W, Bechtold T (2006) Fibrillation tendency of cellulosic fibres. VII. Combined effects of treatments with an alkali, crosslinking agent, and reactive dye. J Appl Polym Sci 100:1176–1183CrossRefGoogle Scholar
  120. Zhang H, Liu X, Li D, Li R (2009) Effect of cellulose concentration in NMMO·H2O solution on prediction of MW and MWD of cellulose using a rheology-based method. Polym Eng Sci 49:554–558CrossRefGoogle Scholar
  121. Zhang YF, Zhang PR, Wu J et al (2016) The rheological properties of bamboo cellulose pulp/ionic liquid system. IOP Conf Ser Mater Sci Eng 137:012071CrossRefGoogle Scholar
  122. Zhang S, Chen C, Duan C et al (2018) Regenerated cellulose by the lyocell process, a brief review of the process and properties. BioResources 13:4577–4592Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Anwar J. Sayyed
    • 1
    • 2
  • Niteen A. Deshmukh
    • 2
  • Dipak V. Pinjari
    • 3
    Email author
  1. 1.Institute of Chemical Technology (ICT)Matunga, MumbaiIndia
  2. 2.Pulp and Fibre Innovation Centre (PFIC) - A Unit of Grasim Industries Ltd. TalojaNavi MumbaiIndia
  3. 3.National Centre for Nanosciences and NanotechnologyUniversity of MumbaiMumbaiIndia

Personalised recommendations