, Volume 26, Issue 5, pp 3193–3204 | Cite as

Mechanical and thermal properties of rice straw cellulose nanofibrils-enhanced polyvinyl alcohol films using freezing-and-thawing cycle method

  • Yan Wu
  • Qinwen Tang
  • Feng YangEmail author
  • Li Xu
  • Xuehua Wang
  • Jilei ZhangEmail author
Original Research


This study investigated effects of loadings of rice straw (Oryza sativa L.) cellulose nanofibrils (CNFs) defibrillated using the high-pressure homogenization technique on tensile property, glass transition temperature, and thermal stability of polyvinyl alcohol (PVA) matrix. CNF loadings had five percentage levels by weight of final composite, i.e. 0, 0.03, 0.08, 0.12, and 0.17%, respectively. A freezing-and-thawing cycle method cast PVA/CNF-mixed and PVA-only films. Experimental results showed that PVA films with 0.03% CNFs had average tensile strength of 50.8 MPa and modulus of 707 MPa, which were 32 and 21% higher than neat PVA ones, respectively. In addition, the glass transition temperature values of PVA/CNF-mixed film increased from 51.6% to 82.6% with increasing the amount of CNFs. The thermogravimetric analysis showed that PVA/CNF-mixed films had significantly higher thermal stability than PVA-only films. The shift of the O–H stretching vibration peak in PVA/CNF-mixed films indicated a good compatibility between CNFs and PVA matrix.

Graphical abstract


Rice straw Cellulose fibrils Poly(vinyl alcohol) Film 



The authors gratefully acknowledgement the financial support of the project funded by Jiangsu Government Scholarship for Overseas Studies, National Natural Science Foundation of China (31800471), Huzhou city, Zhejiang province “Nan Taihu Lake elite plan” project ([2018] No. 2), Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX17-0828), National Key R&D Program of China (2017YFD0601104) and the Special Scientific Research Fund of Construction of High-level teachers Project of Beijing Institute of Fashion Technology (BIFTQG201805).


  1. ASTM (2000) Standard test method for tensile properties of thin plastic sheeting (ASTM D882-02). In: Annual book of ASTM standards, vol. 8.01. American Society for Testing and Materials, West Conshohocken, PA, pp 165–173Google Scholar
  2. Bahrami SB, Mirzadeh KS (2004) A novel artificial skin based on chitosan/gelation/PVA composite membrane. Transactions-7th world biomaterials congress, p 410Google Scholar
  3. Bai YK, Chen X (2017) A fast water-induced shape memory polymer based on hydroxyethyl cellulose/graphene oxide composites. Compos Part A Appl S 103:9–16. CrossRefGoogle Scholar
  4. Ben AK, Ramires EC, den Fonteyne WK, Kissi NE, Dufresne A (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1(1):236–240. CrossRefGoogle Scholar
  5. Boufi S, González I, Aguilarb MD, Tarrèsb Q, ÀPèlach M, Mutjé P (2016) Nanofibrillated cellulose as an additive in papermaking process: a review. Carbohydr Polym 154:151–166. CrossRefPubMedGoogle Scholar
  6. Cai J, Chen JY, Zhang Q, Lei M, He JR, Xiao AH, Ma CH, Li S, Xiong HG (2016) Well-aligned cellulose nanofiber-reinforced polyvinyl alcohol composite film: mechanical and optical properties. Carbohydr Polym 140:238–245. CrossRefPubMedGoogle Scholar
  7. Chaabouni O, Boufi S (2017) Cellulose nanofibrils/polyvinyl acetate nanocomposite adhesives with improved mechanical properties. Carbohydr Polym 156:64–70. CrossRefPubMedGoogle Scholar
  8. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107CrossRefGoogle Scholar
  9. Chen H, Zhang WF, Wang HK, Wu Y, Zhong TH, Fei BH (2018) Effect of alkali treatment on wettability and thermal stability of individual bamboo fibers. J Wood Sci 64(4):398–405CrossRefGoogle Scholar
  10. Cheng Q, Wang S, Zhou D, Zhang Y, Rials T (2007) Lyocell-derived cellulose fibril and its biodegradable nanocomposite. J Nanjing For Univ 31(4):21–26Google Scholar
  11. Cherian BM, Leao AL, De Souza SF, Thomas S, Pothan LA, Kottaisamy M (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Ploym 80(4):1790–1798. CrossRefGoogle Scholar
  12. Choo K, Ching YC, Chuah CH, Julai S, Liou NS (2016) Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials 9(8):644. CrossRefPubMedCentralGoogle Scholar
  13. Christie MH, Nikolaos AP (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33(7):2472–2479. CrossRefGoogle Scholar
  14. Fahma F, Hori N, Iwata T, Takemura A (2013) The morphology and properties of poly(methyl methacrylate) cellulose nanocomposites prepared by immersion precipitation method. J Appl Polym Sci 128(3):1563–1568. CrossRefGoogle Scholar
  15. Feng XH, Yang ZZ, Chmely S, Wang QW, Wang SQ, Xie YJ (2017) Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: mechanical reinforcement and thermal stabilization. Carbohydr Polym 169:272–281. CrossRefPubMedGoogle Scholar
  16. Freund RJ, Wilson WJ (1997) Statistical methods. Academic Press, San Diego, p 371Google Scholar
  17. Frone AN, Panaitescu DM, Dan D, Spataru CI (2011) Preparation and characterization oF PVA composites with cellulose nanofibers obtained by ultrasonication. J Appl Polym Sci 110(5):2854–2861Google Scholar
  18. Gao JW, Zhou FZ, Guo ML (1990) Curves collection of caloric analysis for macromolecule. Science Publishing Company, BeijingGoogle Scholar
  19. Gonzalez I, Vilaseca F, Alcala M, Pélach M, Boufi S, Mutjé P (2013) Effect of the combination of biobeating and NFC on the physico-mechanical propertiesof paper. Cellulose 20(3):1425–1435CrossRefGoogle Scholar
  20. Grüneberger F, Künniger T, Zimmermann T, Arnold M (2014) Nanofibrillated cellulose in wood coatings: mechanical properties of free composite films. J Mater Sci 49(18):6437–6448CrossRefGoogle Scholar
  21. Huang GL, Feng YD, He JY (1992) Pilot study of the structure of low temperature PVA. Macromol Trans 3:316–320Google Scholar
  22. Huang CX, Su Y, Shi JH, Yuan C, Zhai SC, Yong Q (2019a) Revealing the effects of centuries ageing on the chemically structural features of lignin in archaeological fir woods. New J Chem. CrossRefGoogle Scholar
  23. Huang CX, Tao YH, Li M, Zhang WY, Fan YM, Yong Q (2019b) Synthesis and characterization of an antioxidative galactomannan-iron complex from sesbania seed. Polymers 11:28. CrossRefGoogle Scholar
  24. Jayasekara R (2003) Biodegradation by composting of surface modified starch and PVA blended films. J Polym Environ 11(2):49–56CrossRefGoogle Scholar
  25. Jeong BH, Hoek EMV, Yan YS, Subramani A, Huang XF, Hurwitz G, Ghosh AK, Jawor A (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Membr Sci 294(1–2):1–7. CrossRefGoogle Scholar
  26. Jiang S, Liu S, Feng WH (2011) PVA hydrogel properties for biomedical application. J Mech Behav Biomed 4(7):1228–1233. CrossRefGoogle Scholar
  27. Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscas cannabinus) pulp and nanofibers. Bioresoures 4(2):626–639Google Scholar
  28. Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292(1):5–31CrossRefGoogle Scholar
  29. Karimi A, Navidbakhsh M (2015) Mechanical properties of PVA material for tissue engineering applications. Mater Process Rep 29(2):90–100. CrossRefGoogle Scholar
  30. Kiziltas EE, Kiziltas A, Bollin SC, Gardner DJ (2015) Preparation and characterization of transparent PMMA-cellulose-based nanocomposites. Carbohydr Polym 127:381–389. CrossRefPubMedGoogle Scholar
  31. Kiziltas A, Nazari B, Kiziltas EE, Gardner DJS, Han Y, Rushing TS (2016) Cellulose nanofiber-polyehtylene nanocomposites modified by polyvinly alcohol. J Appl Polym Sci 133(6):1–8. CrossRefGoogle Scholar
  32. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Edit 50(24):5438–5466. CrossRefGoogle Scholar
  33. Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T (2012) Nanofibrillar cellulose films for controlled drug delivery. Eur J Pharm Biopharm 82(2):308–315. CrossRefPubMedGoogle Scholar
  34. Kumar HMPN, Prabhakar MN, Prasad CV, Rao KM, Reddy TVAK, Rao KC, Subha MCS (2010) Compatibility studies of chitosan/PVA blend in 2% aqueous acetic acid solution at 30 °C. Carbohydr Polym 82(2):251–255. CrossRefGoogle Scholar
  35. Lee SH, Teramoto Y, Endo T (2011) Cellulose nanofiber-reinforced polycaprolactone/polypropylene hybrid nanocomposite. Compos Part A Appl S 42(2):151–156. CrossRefGoogle Scholar
  36. Li J (2003) Spectroscopy of wood. Science Publishing Company, BeijingGoogle Scholar
  37. Lim M, Kim D, Han H, Khan SB, Seo J (2015) Water sorption and water-resistance properties of poly(vinyl alcohol)/clay nanocomposite films: effects of chemical structure and morphology. Polym Comp 36(4):660–667. CrossRefGoogle Scholar
  38. Liu ZQ, Dong Y, Men HT, Jiang M, Tong J, Zhou J (2012) Post-crosslinking modification of thermoplastic starch/PVA blend films by using sodium hexametaphosphate. Carbohydr Polym 89(2):473–477. CrossRefPubMedGoogle Scholar
  39. Liu DG, Sun X, Tian HF, Maiti S, Ma ZS (2013) Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 20(6):2981–2989CrossRefGoogle Scholar
  40. Luo XG, Li JW, Lin XY (2012) Effect of gelatinization and additives on morphology and thermal behavior of corn starch/PVA blend films. Polymers 90(4):1595–1600. CrossRefGoogle Scholar
  41. Maatar W, Boufi S (2015) Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent. Carbohydr Polym 126:199–207. CrossRefPubMedGoogle Scholar
  42. Mittal A, Garga S, Kohlia D, Maitib M, Janac AK, Bajpai S (2016) Effect of cross linking of PVA/starch and reinforcement of modified barley husk on the properties of composite films. Carbohydr Polym 151:926–938. CrossRefPubMedGoogle Scholar
  43. Mohammed AZ, Gibson LJ (2013) The structure and mechanics of nanofibrillar cellulose foams. Soft Matter 9(5):1580–1588CrossRefGoogle Scholar
  44. Morits M, Verho T, Sorvari J, Liljeström V, Kostiainen MA, Gröschel AH, Ikkala O (2017) Toughness and fracture properties in nacre-mimetic clay/polymer nanocomposites. Adv Funct Mater 27(10):1–9. CrossRefGoogle Scholar
  45. Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high strength plant fiber based composites. Appl Phys A 78(4):547–552CrossRefGoogle Scholar
  46. Nakagaito AN, Yano H (2008) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15(4):555–559CrossRefGoogle Scholar
  47. Nogi M, Shinsuke I, Kentaro A, Keishin H, Nakagaito AN, Hiroyuki Y (2006) Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Appl Phys Lett 88(13):133124–133127. CrossRefGoogle Scholar
  48. Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11(3):674–681. CrossRefGoogle Scholar
  49. Priya B, Gupta VK, Pathania D, Singha AS (2014) Synthesis, characterization and antibacterial activity of biodegradablestarch/PVA composite films reinforced with cellulosic fibre. Carbohydr Polym 109:171–179. CrossRefPubMedGoogle Scholar
  50. Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of highspecific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71(13):1593–1599. CrossRefGoogle Scholar
  51. The Statistic Analysis System (SAS) (2006) JMP version 6.0.2 software. SAS Institute, Cary, NC, USAGoogle Scholar
  52. Tajvidi M, Falk RH, Hermanson JC (2006) Effect of natural fibres on thermal and mechanical properties of natural fibre polyproylene composites studied by dynamic mechanic analysis. J Appl Polym Sci 101(6):4341–4349. CrossRefGoogle Scholar
  53. Thomas PS, Guerbois JP, Russell GF, Briscoe BJ (2001) FTIR study of the thermal degradation of poly(vinyl alcohol). J Therm Anal Calorim 64(2):501CrossRefGoogle Scholar
  54. Thygesen A, Oddershede J, Lilholt H, Thosmsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6):563–576CrossRefGoogle Scholar
  55. Wang HG (1991) Theory of molding process for macromolecule materials. Chemistry Industry Publishing Company, BeijingGoogle Scholar
  56. Wang XZ, Li YJ, Wang SQ, Yu WW, Deng YH (2017a) Temperature-dependent mechanical properties of wood-adhesive bondline evaluated by nanoindentation. J Adhes 93(8):640–656. CrossRefGoogle Scholar
  57. Wang YT, Zhao HB, Degracia KC, Han LX, Sun H, Sun MZ, Wang YZ, Schiraldi DA (2017b) Green approach to improving the strength and flame retardancy of poly(vinyl alcohol)/clay aerogels: incorporating bio-based gelatin. ACS Appl Mater Interfaces 9(48):42258–42265. CrossRefPubMedGoogle Scholar
  58. Wong KH, Hutter JL, Allman MZ, Wan W (2009) Physical properties of ion beam treated electrospun poly(vinyl alcohol) nanofibers. Eur Polym J 45(5):1349–1358. CrossRefGoogle Scholar
  59. Wu LG, Zhang YT, Cai LS (2001) Current investigation of PVA gel prepared by frozen-defrozen method. Chem Ind New Mater 9(11):18–25Google Scholar
  60. Wu Y, Zhou DG, Wang SQ, Zhang Y (2009) Polypropylene composites reinforced with rice straw micro/nano fibrils isolated by high intensity ultrasonication. BioResources 4(4):1487–1497Google Scholar
  61. Wu Y, Wang SQ, Zhou DG, Zhang Y, Wang X, Yang R (2013) Biodegradable polyvinyl alcohol nanocomposites made from rice straw fibrils: mechanical and thermal properties. J Compos Mater 47(12):1449–1459. CrossRefGoogle Scholar
  62. Xu J (2007) Preparation and structure investigation of PVA/silk film. Master degree dissertation in Shanghai Traffic UniversityGoogle Scholar
  63. Xu Y, Hong W, Bai H, Li C, Shi G (2009) Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47(15):3538–3543. CrossRefGoogle Scholar
  64. Yang X, Li L, Shang S, Tao XM (2010) Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites. Polymer 51(15):3431–3435. CrossRefGoogle Scholar
  65. Yang X, Shang S, Li L (2011) Layer-structured poly(vinyl alcohol)/graphene oxide nanocomposites with improved thermal and mechanical properties. J Appl Polym Sci 120(3):1355–1360. CrossRefGoogle Scholar
  66. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M (2005) Optically transparent composites reinforced with networks of bacterialnanofibers. Adv Mater 17(2):153–155. CrossRefGoogle Scholar
  67. Zarges JC, KaufholdC Feldmann M, Heim HP (2018) Single fiber pull-out test of regenerated cellulose fibers in polypropylene: an energetic evaluation. Compos Part A Appl S 105:19–27. CrossRefGoogle Scholar
  68. Zhang XM, Liu XQ, Zheng WG, Zhu J (2012) Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohydr Polym 88(1):6–30. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Furnishings and Industrial DesignNanjing Forestry UniversityNanjingPeople’s Republic of China
  2. 2.Fashion Accessory Art and Engineering CollegeBeijing Institute of Fashion TechnologyBeijingPeople’s Republic of China
  3. 3.Department of Sustainable BioproductsMississippi State UniversityMississippi StateUSA

Personalised recommendations