Advertisement

Cellulose

, Volume 26, Issue 5, pp 3155–3165 | Cite as

Transparent konjac glucomannan/cellulose nanofibril composite films with improved mechanical properties and thermal stability

  • Jinyu Wang
  • Xin Chen
  • Chenggang Zhang
  • Abdul Rehman Akbar
  • Zhuqun ShiEmail author
  • Quanling YangEmail author
  • Chuanxi Xiong
Original Research

Abstract

Development of renewable, biodegradable and biocompatible high-performance biomass materials is in great demand for the creation of a low-carbon society. Here, a series of konjac glucomannan (KGM) nanocomposite films reinforced by 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCNs) were fabricated from aqueous system by casting pathway. The composites exhibited nanolayered structure and intermolecular hydrogen bonds formed between KGM and TOCN, resulting in their good compatibility. Moreover, the incorporation of TOCN enhanced the mechanical properties of KGM significantly. Particularly, with an increase of TOCN content from 0 to 20 wt%, the tensile strength and Young’s modulus of the composites increased from 59 MPa and 1.18 GPa to 180 MPa and 2.51 GPa, respectively; the elongation at break reached a maximum of 42.9% with 10 wt% TOCN addition, much higher than 25.6% of the neat KGM film. In addition, the composites also possessed excellent transparency and thermal stability. These biomass-based nanocomposite films are promising in the field of high-performance packaging materials.

Graphical abstract

Keywords

Cellulose nanofibril Konjac glucomannan Nanocomposite film Mechanical property 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51703177, 21704079), the Fundamental Research Funds for the Central Universities (WUT: 2017IVA107, 2017III025, 2018III009, 2018IVB022, 2018IVB041, 2018IB021), and State Key Laboratory of Pulp and Paper Engineering (No. 201765).

References

  1. Behera SS, Ray RC (2016) Konjac glucomannan, a promising polysaccharide of amorphophallus konjac K. Koch in health care. Int J Biol Macromol 92:942–956.  https://doi.org/10.1016/j.ijbiomac.2016.07.098 CrossRefPubMedGoogle Scholar
  2. Brenner T, Wang Z, Achayuthakan P, Nakajima T, Nishinari K (2013) Rheology and synergy of κ-carrageenan/locust bean gum/konjac glucomannan gels. Carbohydr Polym 98(1):754–760.  https://doi.org/10.1016/j.carbpol.2013.04.020 CrossRefPubMedGoogle Scholar
  3. Chen JG, Liu CH, Chen YQ, Chen Y, Chang PR (2008) Structural characterization and properties of starch/konjac glucomannan blend films. Carbohydr Polym 74(4):946–952.  https://doi.org/10.1016/j.carbpol.2008.05.021 CrossRefGoogle Scholar
  4. Cheng LH, Karim AA, Seow CC (2008) Characterisation of composite films made of konjac glucomannan (kgm), carboxymethyl cellulose (CMC) and lipid. Food Chem 107(1):411–418.  https://doi.org/10.1016/j.foodchem.2007.08.068 CrossRefGoogle Scholar
  5. Fujisawa S, Ikeuchi T, Takeuchi M, Saito T, Isogai A (2012) Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromolecules 13(7):2188–2194.  https://doi.org/10.1021/bm300609c CrossRefPubMedGoogle Scholar
  6. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165.  https://doi.org/10.1021/bm801065u CrossRefPubMedGoogle Scholar
  7. Huang YC, Yang CY, Chu HW, Wu WC, Tsai JS (2015) Effect of alkali on konjac glucomannan film and its application on wound healing. Cellulose 22(1):737–747.  https://doi.org/10.1007/s10570-014-0512-z CrossRefGoogle Scholar
  8. Huang T, Kuboyama K, Fukuzumi H, Ougizawa T (2018) PMMA/TEMPO-oxidized cellulose nanofiber nanocomposite with improved mechanical properties, high transparency and tunable birefringence. Cellulose 25(4):2393–2403.  https://doi.org/10.1007/s10570-018-1725-3 CrossRefGoogle Scholar
  9. Isogai A, Usuda M, Kato T, Uryu T, Atalla R (1989) Solid-state CP/MAS 13C NMR study of cellulose polymorphs. Macromolecules 22(7):3168–3172.  https://doi.org/10.1021/ma00197a045 CrossRefGoogle Scholar
  10. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85.  https://doi.org/10.1039/c0nr00583e CrossRefPubMedGoogle Scholar
  11. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571–2576.  https://doi.org/10.1021/bm900520n CrossRefPubMedGoogle Scholar
  12. Kato K, Watanabe T, Matsuda K (1969) Studies on the chemical structure of konjac mannan. J Agric Chem Soc Jpn 34(4):532–539.  https://doi.org/10.1080/00021369.1970.10859645 CrossRefGoogle Scholar
  13. Katsuraya K, Okuyama K, Hatanaka K, Oshima K, Sato T, Matsuzaki K (2003) Constitution of konjac glucomannan: chemical analysis and 13C NMR spectroscopy. Carbohydr Polym 53(2):183–189.  https://doi.org/10.1016/S0144-8617(03)00039-0 CrossRefGoogle Scholar
  14. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44(22):3358–3393.  https://doi.org/10.1002/anie.200460587 CrossRefPubMedGoogle Scholar
  15. Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromolecules 14(4):1160–1165.  https://doi.org/10.1021/bm400075f CrossRefPubMedGoogle Scholar
  16. Lao JP, Xie HA, Shi ZQ et al (2018) Flexible regenerated cellulose/boron nitride nanosheet high-temperature dielectric nanocomposite films with high energy density and breakdown strength. ACS Sustain Chem Eng 6(5):7151–7158.  https://doi.org/10.1021/acssuschemeng.8b01219 CrossRefGoogle Scholar
  17. Li B, Li J, Xia J, Kennedy JF, Yie X, Liu TG (2011) Effect of gamma irradiation on the condensed state structure and mechanical properties of konjac glucomannan/chitosan blend films. Carbohydr Polym 83(1):44–51.  https://doi.org/10.1016/j.carbpol.2010.07.017 CrossRefGoogle Scholar
  18. Li X, Jiang F, Ni X et al (2015) Preparation and characterization of konjac glucomannan and ethyl cellulose blend films. Food Hydrocoll 44:229–236.  https://doi.org/10.1016/j.foodhyd.2014.09.027 CrossRefGoogle Scholar
  19. Li N, Chen W, Chen GX, Tian JF (2017) Rapid shape memory TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin hydrogels with enhanced mechanical strength. Carbohydr Polym 171:77–84.  https://doi.org/10.1016/j.carbpol.2017.04.035 CrossRefPubMedGoogle Scholar
  20. Maeda M, Shimahara H, Sugiyama N (1980) Detailed examination of the branched structure of konjac glucomannan. J Agric Chem Soc 44(2):245–252.  https://doi.org/10.1080/00021369.1980.10863939 CrossRefGoogle Scholar
  21. Mikkonen KS, Mathew AP, Pirkkalainen K et al (2010) Glucomannan composite films with cellulose nanowhiskers. Cellulose 17(1):69–81.  https://doi.org/10.1007/s10570-009-9380-3 CrossRefGoogle Scholar
  22. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207.  https://doi.org/10.1023/A:1018431705579 CrossRefGoogle Scholar
  23. Peng YC, Gardner DJ, Han Y (2015) Characterization of mechanical and morphological properties of cellulose reinforced polyamide 6 composites. Cellulose 22(5):3199–3215.  https://doi.org/10.1007/s10570-015-0723-y CrossRefGoogle Scholar
  24. Ratcliffe I, Williams PA, Viebke C, Meadows J (2005) Physicochemical characterization of konjac glucomannan. Biomacromolecules 6(4):1977–1986.  https://doi.org/10.1021/bm0492226 CrossRefPubMedGoogle Scholar
  25. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691.  https://doi.org/10.1021/bm060154s CrossRefPubMedGoogle Scholar
  26. Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10(7):1992–1996.  https://doi.org/10.1021/bm900414t CrossRefPubMedGoogle Scholar
  27. Shi Z, Liu Y, Xu H, Yang Q, Xiong C, Kuga S, Matsumoto Y (2018) Facile dissolution of wood pulp in aqueous NaOH/urea solution by ball milling pretreatment. Ind Crop Prod 118:48–52.  https://doi.org/10.1016/j.indcrop.2018.03.035 CrossRefGoogle Scholar
  28. Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13(3):842–849.  https://doi.org/10.1021/bm2017542 CrossRefPubMedGoogle Scholar
  29. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494.  https://doi.org/10.1007/s10570-010-9405-y CrossRefGoogle Scholar
  30. Soni B, Hassan EB, Schilling MW, Mahmoud B (2016) Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties. Carbohydr Polym 151:779–789.  https://doi.org/10.1016/j.carbpol.2016.06.022 CrossRefPubMedGoogle Scholar
  31. Wang L, Xiao M, Dai SH et al (2014) Interactions between carboxymethyl konjac glucomannan and soy protein isolate in blended films. Carbohydr Polym 101(1):136–145.  https://doi.org/10.1016/j.carbpol.2013.09.028 CrossRefPubMedGoogle Scholar
  32. Wang K, Wu K, Xiao M, Kuang Y, Corke H, Ni XW, Jiang FT (2017) Structural characterization and properties of konjac glucomannan and zein blend films. Int J Biol Macromol 105(1):1096–1104.  https://doi.org/10.1016/j.ijbiomac.2017.07.127 CrossRefPubMedGoogle Scholar
  33. Wu CH, Peng SH, Wen CG, Wang XM, Fan LL, Deng RH, Pang J (2012) Structural characterization and properties of konjac glucomannan/curdlan blend films. Carbohydr Polym 89(2):497–503.  https://doi.org/10.1016/j.carbpol.2012.03.034 CrossRefPubMedGoogle Scholar
  34. Wu T, Cai B, Wang J, Zhang CG, Shi ZQ, Yang QL, Hu G-H, Xiong CX (2019) TEMPO-oxidized cellulose nanofibril/layered double hydroxide nanocomposite films with improved hydrophobicity, flame retardancy and mechanical properties. Compos Sci Technol 171:111–117.  https://doi.org/10.1016/j.compscitech.2018.12.019 CrossRefGoogle Scholar
  35. Xiao CB, Lu YS, Liu HJ, Zhang LN (2001) Preparation and characterization of konjac glucomannan and sodium carboxymethylcellulose blend films. J Appl Polym Sci 80(1):26–31.  https://doi.org/10.1002/1097-4628(20010404)80:1%3c26:AID-APP1070%3e3.0.CO;2-B CrossRefGoogle Scholar
  36. Yang G, Zhang LN, Yamane C, Miyamoto I, Inamoto M, Okajima K (1998) Blend membranes from cellulose/konjac glucomannan cuprammonium solution. J Membr Sci 139(1):47–56.  https://doi.org/10.1016/S0376-7388(97)00245-7 CrossRefGoogle Scholar
  37. Yang G, Xiong XP, Zhang LN (2002) Microporous formation of blend membranes from cellulose/konjac glucomannan in naoh/thiourea aqueous solution. J Membr Sci 201(1):161–173.  https://doi.org/10.1016/S0376-7388(01)00727-X CrossRefGoogle Scholar
  38. Yang QL, Saito T, Berglund LA, Isogai A (2015) Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization. Nanoscale 7(42):17957–17963.  https://doi.org/10.1039/C5NR05511C CrossRefPubMedGoogle Scholar
  39. Yang QL, Shi ZQ, Qi ZD et al (2017) High-performance TEMPO-oxidized cellulose nanofibril/quantum dot nanocomposites. J Control Release 259:e115–e116.  https://doi.org/10.1016/j.jconrel.2017.03.240 CrossRefGoogle Scholar
  40. Yang JW, Xie HA, Chen H, Shi ZQ, Wu T, Yang QL, Xiong CX (2018a) Cellulose nanofibril/boron nitride nanosheet composites with enhanced energy density and thermal stability by interfibrillar cross-linking through Ca2+. J Mater Chem A 6(4):1403–1411.  https://doi.org/10.1039/C7TA08188J CrossRefGoogle Scholar
  41. Yang QL, Zhang CG, Shi ZQ, Wang JY, Xiong CX, Saito T, Isogai A (2018b) Luminescent and transparent nanocellulose films containing europium carboxylate groups as flexible dielectric materials. ACS Appl Nano Mater 1:4972–4979.  https://doi.org/10.1021/acsanm.8b01112 CrossRefGoogle Scholar
  42. Yang QL, Yang JW, Shi ZQ, Xiang SJ, Xiong CX (2018c) Recent progress of nanocellulose-based electroconductive materials and their applications as electronic devices. J For Eng 3(3):1–11.  https://doi.org/10.13360/j.Issn.2096-1359.2018.03.001 CrossRefGoogle Scholar
  43. Ye X, Kennedy JF, Li B, Xie BJ (2006) Condensed state structure and biocompatibility of the konjac glucomannan/chitosan blend films. Carbohydr Polym 64(4):532–538.  https://doi.org/10.1016/j.carbpol.2005.11.005 CrossRefGoogle Scholar
  44. Zhang YQ, Xie BJ, Gan X (2005) Advance in the applications of konjac glucomannan and its derivatives. Carbohydr Polym 60(1):27–31.  https://doi.org/10.1016/j.carbpol.2004.11.003 CrossRefGoogle Scholar
  45. Zhang C, Han BC, Yao X, Pang L, Luo XG (2013) Synthesis of konjac glucomannan phthalate as a new biosorbent for copper ion removal. J Polym Res 20(1):1–13.  https://doi.org/10.1007/s10965-012-0034-z CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jinyu Wang
    • 1
  • Xin Chen
    • 1
  • Chenggang Zhang
    • 1
  • Abdul Rehman Akbar
    • 1
  • Zhuqun Shi
    • 1
    • 2
    Email author
  • Quanling Yang
    • 1
    • 3
    Email author
  • Chuanxi Xiong
    • 1
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and EngineeringWuhan University of TechnologyWuhanChina
  2. 2.School of Chemistry, Chemical Engineering and Life SciencesWuhan University of TechnologyWuhanChina
  3. 3.State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations