Advertisement

Cellulose

, Volume 26, Issue 5, pp 3095–3109 | Cite as

Effect of solvent pre-treatment on the structures and dissolution of microcrystalline cellulose in lithium chloride/dimethylacetamide

  • Weiku Wang
  • Yinhui Li
  • Weijie Li
  • Baohua ZhangEmail author
  • Yaodong LiuEmail author
Original Research
  • 187 Downloads

Abstract

This study systematically investigated the structural changes of cotton-based microcrystalline cellulose (MCC) during solvent treatment in water and dimethylacetamide (DMAc), as well as how solvent exchange affects the dissolution rates of MCC in LiCl/DMAc solution. When MCC is soaked in DMAc or water for 3 days or longer, the surface cellulose layers become exfoliated from the MCC particles and these exfoliated portions are solvable in LiCl/DMAc. DMAc treatment significantly improves the nano-porosity of MCC. Thus, the chloride anions are able to diffuse into cellulose and lead to the final dissolution of cellulose chains via charge repulsion effects. On the other hand, water treatment exhibits strong pore closing effect, especially for nano-pores with a diameter < 30 nm, which prohibits the diffusion of chloride anions and the final dissolution of cellulose chains.

Graphical abstract

Keywords

Cellulose DMAc LiCl Solvent pretreatment Dissolution 

Notes

Acknowledgments

The authors acknowledge the financial support by One Hundred Person Project of the Chinese Academy of Sciences, One Hundred Person Project of Shanxi Province, and National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, China.

Supplementary material

10570_2019_2300_MOESM1_ESM.docx (4.1 mb)
Supplementary material 1 (DOCX 4221 kb)

References

  1. Battista OA (2002) Hydrolysis and crystallization of cellulose. Ind Eng Chem 42:453–470Google Scholar
  2. Belousova TA, Shablygin MV, Belousov YY, Golova LK, Papkov SP (1986) Spectral features of the N-methylmorpholine-N-oxide-water-cellulose system. Polym Sci USSR 28:1115–1122CrossRefGoogle Scholar
  3. Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548.  https://doi.org/10.1002/mabi.200400222 CrossRefPubMedGoogle Scholar
  4. Cho HM, Gross AS, Chu JW (2011) Dissecting force interactions in cellulose deconstruction reveals the required solvent versatility for overcoming biomass recalcitrance. J Am Chem Soc 133:14033–14041.  https://doi.org/10.1021/ja2046155 CrossRefPubMedGoogle Scholar
  5. Chrapava S, Touraud D, Rosenau T, Potthast A, Kunz W (2003) The investigation of the influence of water and temperature on the LiCl/DMAc/cellulose system. Phys Chem Chem Phys 5:1842–1847CrossRefGoogle Scholar
  6. Cuculo JA, Smith CB, Sangwatanaroj U, Stejskal EO, Sankar SS (1994) A study on the mechanism of dissolution of the cellulose/NH3/NH4SCN system. I. J Polym Sci, Part A: Polym Chem 32:229–239CrossRefGoogle Scholar
  7. Dawsey TR, Mccormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J Macromol Sci, Rev Macromol Chem Phys C30:405–440.  https://doi.org/10.1080/07366579008050914 CrossRefGoogle Scholar
  8. Dumanlı AG, Windle AH (2012) Carbon fibres from cellulosic precursors: a review. J Mater Sci 47:4236–4250CrossRefGoogle Scholar
  9. Dupont AL (2003) Cellulose in lithium chloride/N,N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions. Polymer 44:4117–4126.  https://doi.org/10.1016/S0032-3861(03)00398-7 CrossRefGoogle Scholar
  10. El-Kafrawy A (2010) Investigation of the cellulose/LiCl/dimethylacetamide and cellulose/LiCl/N-methyl-2-pyrrolidinone solutions by 13C NMR spectroscopy. J Appl Polym Sci 27:2435–2443CrossRefGoogle Scholar
  11. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRefGoogle Scholar
  12. French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588.  https://doi.org/10.1007/s10570-012-9833-y CrossRefGoogle Scholar
  13. French AD, Kim HJ (2018) Cotton fiber structure. In: Fang DD (ed) Cotton fiber: physics, chemistry and biology. Springer, Cham, pp 13–39.  https://doi.org/10.1007/978-3-030-00871-0_2 CrossRefGoogle Scholar
  14. Hamdaoui LE, Moussaouiti ME, Gmouh S (2016) Homogeneous esterification of cellulose in the mixture N-butylpyridinium chloride/dimethylsulfoxide. Int J Polym Sci 2016:1–7CrossRefGoogle Scholar
  15. Hasani M, Henniges U, Idström A, Nordstierna L, Westman G, Rosenau T, Potthast A (2013) Nano-cellulosic materials: the impact of water on their dissolution in DMAc/LiCl. Carbohydr Polym 98:1565–1572CrossRefPubMedGoogle Scholar
  16. Ishii D, Tatsumi D, Matsumoto T (2003) Effect of solvent exchange on the solid structure and dissolution behavior of cellulose. Biomacromol 4:1238–1243.  https://doi.org/10.1021/bm034065g CrossRefGoogle Scholar
  17. Ishii D, Kanazawa Y, Tatsumi D, Matsumoto T (2007) Effect of solvent exchange on the pore structure and dissolution behavior of cellulose. J Appl Polym Sci 103:3976–3984.  https://doi.org/10.1002/app.25424 CrossRefGoogle Scholar
  18. Ishii D, Tatsumi D, Matsumoto T (2008) Effect of solvent exchange on the supramolecular structure, the molecular mobility and the dissolution behavior of cellulose in LiCl/DMAc. Carbohydr Res 343:919–928.  https://doi.org/10.1016/j.carres.2008.01.035 CrossRefPubMedGoogle Scholar
  19. Isik M, Sardon H, Mecerreyes D (2014) Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci 15:11922CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jin H, Zha C, Gu L (2007) Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydr Res 342:851–858CrossRefPubMedGoogle Scholar
  21. Kawamoto H (2015) Reactions and molecular mechanisms of cellulose pyrolysis. Mokuzai Gakkaishi 61:1–24CrossRefGoogle Scholar
  22. Klemm D, Heublein B, Fink HP, Bohn A (2010) Cellulose: fascinating biopolymer and sustainable raw material. Cheminform 44:3358–3393Google Scholar
  23. Lindman B, Medronho B, Alves L, Costa C, Edlund H, Norgren M (2017) The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena. Phys Chem Chem Phys 19:23704–23718.  https://doi.org/10.1039/c7cp02409f CrossRefPubMedGoogle Scholar
  24. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMedGoogle Scholar
  25. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crop Prod 93:2–25.  https://doi.org/10.1016/j.indcrop.2016.02.016 CrossRefGoogle Scholar
  26. Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249CrossRefGoogle Scholar
  27. Peng YC, Gardner DJ, Han YS (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102.  https://doi.org/10.1007/s10570-011-9630-z CrossRefGoogle Scholar
  28. Pionteck H, Berger W, Morgenstern B, Fengel D (1996) Changes in cellulose structure during dissolution in LiCl: N,N-dimethylacetamide and in the alkaline iron tartrate system EWNN. Cellulose 3:127–139.  https://doi.org/10.1007/Bf02228796 CrossRefGoogle Scholar
  29. Potthast A, Rosenau T, Jeong MJ, Siller M, Vejdovszky P, Henniges U (2014) Finally dissolved! activation procedures to dissolve cellulose in DMAc/LiCl prior to size exclusion chromatography analysis: a review. Curr Chromatogr 1:52–68CrossRefGoogle Scholar
  30. Potthast A et al (2015) Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose 22:1591–1613CrossRefGoogle Scholar
  31. Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRefGoogle Scholar
  32. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRefPubMedGoogle Scholar
  33. Tsioptsias C, Stefopoulos A, Kokkinomalis I, Papadopoulou L, Panayiotou C (2008) Development of micro- and nano-porous composite materials by processing cellulose with ionic liquids and supercritical CO2. Green Chem 10:965.  https://doi.org/10.1039/b803869d CrossRefGoogle Scholar
  34. Usov I et al (2015) Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nat Commun 6:7564CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ute H, Mirjana K, Andrea B, Thomas R, Antje P (2011) Dissolution behavior of different celluloses. Biomacromol 12:871–879CrossRefGoogle Scholar
  36. Wan Y, An F, Zhou P, Li Y, Liu Y, Lu C, Chen H (2017) Regenerated cellulose I from LiCl·DMAc solution. Chem Commun 53:3595–3597.  https://doi.org/10.1039/c7cc00450h CrossRefGoogle Scholar
  37. Wei YP, Cheng F (2007) Effect of solvent exchange on the structure and rheological properties of cellulose in LiCl/DMAc. J Appl Polym Sci 106:3624–3630.  https://doi.org/10.1002/app.26886 CrossRefGoogle Scholar
  38. White RJ, Brun N, Budarin VL, Clark JH, Titirici MM (2014) Always look on the “light” side of life: sustainable carbon aerogels. Chemsuschem 7:670–689.  https://doi.org/10.1002/cssc.201300961 CrossRefPubMedGoogle Scholar
  39. Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13 C NMR spectroscopy. Carbohydr Res 312:123–129CrossRefGoogle Scholar
  40. Wu RL, Wang XL, Li F, Li HZ, Wang YZ (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol 100:2569–2574.  https://doi.org/10.1016/j.biortech.2008.11.044 CrossRefPubMedGoogle Scholar
  41. Yamashiki T, Matsui T, Saitoh M, Okajima K, Kamide K, Sawada T (2010) Characterisation of cellulose treated by the steam explosion method. Part 1: influence of cellulose resources on changes in morphology, degree of polymerisation, solubility and solid structure. Polym Int 22:73–83Google Scholar
  42. Youssefian S, Jakes JE, Rahbar N (2017) Variation of nanostructures, molecular interactions, and anisotropic elastic moduli of lignocellulosic cell walls with moisture. Sci Rep 7:2054.  https://doi.org/10.1038/s41598-017-02288-w CrossRefPubMedPubMedCentralGoogle Scholar
  43. Žepič V et al (2014) Morphological, thermal, and structural aspects of dried and redispersed nanofibrillated cellulose (NFC). Holzforschung 68:657–667CrossRefGoogle Scholar
  44. Zhang C, Liu RG, Xiang JF, Kang HL, Liu ZJ, Huang Y (2014) Dissolution mechanism of cellulose in N,N-Dimethylacetamide/lithium chloride: revisiting through molecular interactions. J Phys Chem B 118:9507–9514.  https://doi.org/10.1021/jp506013c CrossRefPubMedGoogle Scholar
  45. Zhao DS, Li H, Zhang J, Fu LL, Liu MS, Fu JT, Ren PB (2012) Dissolution of cellulose in phosphate-based ionic liquids. Carbohydr Polym 87:1490–1494.  https://doi.org/10.1016/j.carbpol.2011.09.045 CrossRefGoogle Scholar
  46. Zhou J, Zhang L (2000) Solubility of cellulose in NaOH/urea aqueous solution. Polym J 32:866–870CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
  2. 2.CAS Key Laboratory of Carbon Materials, Institute of Coal ChemistryChinese Academy of SciencesTaiyuanChina
  3. 3.National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal ChemistryChinese Academy of SciencesTaiyuanChina

Personalised recommendations