, Volume 26, Issue 5, pp 3167–3181 | Cite as

Surface modification of cellulose nanocrystal using succinic anhydride and its effects on poly(butylene succinate) based composites

  • Canqing Wu
  • Xuzhen ZhangEmail author
  • Xiuhua Wang
  • Qingwen Gao
  • Xinan Li
Original Research


Cellulose nanocrystals (CNCs) extracted from microcrystalline cellulose, were modified by succinic anhydride to give succinic CNCs (SCNCs). Successful surface modification of SCNCs was confirmed by results of FTIR, FE-SEM, contact angle measurement and dispersity test, and SCNCs were then subjected to melt blending with poly(butylene succinate) (PBS) to prepare nanocomposites. Meanwhile, PBS/CNC nanocomposites were also prepared through same procedure as references. The morphology, thermal and mechanical properties and crystallization properties of PBS/SCNC nanocomposites with increasing SCNCs content from 0 to 7 wt% were investigated. PBS/SCNC nanocomposites exhibit better thermal stability than that of PBS/CNCs, which is mainly ascribed to less sulfate groups on CNC surfaces and more hydrogen bond effects between PBS carbonyl groups and ester groups from SCNCs. Young’s modulus and yield strength of PBS/SCNCs are higher than that of PBS/CNC nanocomposites, which is primarily attributed to the homogeneous dispersion of SCNCs in PBS matrix, confirmed by FE-SEM images. This work is valuable for design of PBS-based nanocomposites with enhanced thermal and mechanical properties.

Graphical abstract


Cellulose nanocrystals Poly(butylene succinate) Succinic anhydride Modification Nanocomposites 



The authors gratefully acknowledge Open Foundation of Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci-Tech University), Education Ministry of China (No. 2017001) and Zhejiang Provincial Natural Science Foundation of China (No. LQ18E030010).


  1. Angellier H, Molinaboisseau S, Dufresne A (2005) Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber. Macromolecules 28(38):9161–9170CrossRefGoogle Scholar
  2. Aontee A, Sutapun W (2013) Effect of blend ratio on phase morphology and mechanical properties of high density polyethylene and poly (butylene succinate) blend. In: The international conference on multi-functional materials and structures, pp 555–559Google Scholar
  3. Avolio R, Graziano V, Pereira YDF, Cocca M, Gentile G, Errico ME, Ambrogi V, Avella M (2015) Effect of cellulose structure and morphology on the properties of poly(butylene succinate-co-butylene adipate) biocomposites. Carbohydr Polym 133:408–420CrossRefPubMedGoogle Scholar
  4. Bendahou A, Hajlane A, Dufresne A, Boufi S, Kaddami H (2014) Esterification and amidation for grafting long aliphatic chains on to cellulose nanocrystals: a comparative study. Res Chem Intermed 41:4293–4310CrossRefGoogle Scholar
  5. Braun B, Dorgan JR, Hollingsworth LO (2012) Supra-molecular ecobionanocomposites based on polylactide and cellulosic nanowhiskers: synthesis and properties. Biomacromolecules 13(7):2013–2019CrossRefPubMedGoogle Scholar
  6. Chen S, Cheng L, Huang H, Zou F, Zhao HP (2017) Fabrication and properties of poly(butylene succinate) biocomposites reinforced by waste silkworm silk fabric. Compos A Appl Sci Manuf 95:125–131CrossRefGoogle Scholar
  7. Content M (1997) Standard test methods of testing cellulose acetate propionate and cellulose acetate. ASTM, West ConshohockenGoogle Scholar
  8. Coseri S, Biliuta G, Simionescu BC, Stana-Kleinschek K, Ribitsch V, Harabagiu V (2013) Oxidized cellulose—survey of the most recent achievements. Carbohydr Polym 93(1):207–215CrossRefPubMedGoogle Scholar
  9. Espino-Pérez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49(10):3144–3154CrossRefGoogle Scholar
  10. Flores ED, Funabashi M, Kunioka M (2009) Mechanical properties and biomass carbon ratios of poly(butylene succinate) composites filled with starch and cellulose filler using furfural as plasticizer. J Appl Polym Sci 112(6):3410–3417CrossRefGoogle Scholar
  11. Fortunati E, Armentano I, Iannoni A, Kenny JM (2010) Development and thermal behaviour of ternary PLA matrix composites. Polym Degrad Stab 95(11):2200–2206CrossRefGoogle Scholar
  12. Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90(2):948–956CrossRefPubMedGoogle Scholar
  13. Fujisawa S, Okita Y, Saito T, Togawa E, Isogai A (2011) Formation of N-acylureas on the surface of TEMPO-oxidized cellulose nanofibril with carbodiimide in DMF. Cellulose 18(5):1191–1199CrossRefGoogle Scholar
  14. Glova AD, Falkovich SG, Larin SV, Mezhenskaia DA, Lukasheva NV, Nazarychev VM, Tolmachev DA, Mercurieva AA, Kenny JM, Lyulin SV (2016) Poly(lactic acid)-based nanocomposites filled with cellulose nanocrystals with modified surface: all-atom molecular dynamics simulations. Polym Int 65(8):892–898CrossRefGoogle Scholar
  15. Hamad WY, Hu TQ (2010) Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88(3):392–402Google Scholar
  16. Hashaikeh R, Krishnamachari P, Samad Y (2015) Nanomanifestations of cellulose: applications for biodegradable composites. Springer, BerlinGoogle Scholar
  17. Hu F, Lin N, Chang PR, Huang J (2015) Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydr Polym 129:208–215CrossRefPubMedGoogle Scholar
  18. Jiang F, Esker AR, Roman M (2010) Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. Langmuir ACS J Surf Colloids 26(23):17919–17925CrossRefGoogle Scholar
  19. Jiménez A, Ruseckaite RA (2007) Binary mixtures based on polycaprolactone and cellulose derivatives. J Therm Anal Calorim 88(3):851–856CrossRefGoogle Scholar
  20. Li Y, Fu Q, Ming W, Zeng J (2017) Morphology, crystallization and rheological behavior in poly(butylene succinate)/cellulose nanocrystal nanocomposites fabricated by solution coagulation. Carbohydr Polym 164:75CrossRefPubMedGoogle Scholar
  21. Liang Z, Pan P, Zhu B, Dong T, Inoue Y (2010) Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J Appl Polym Sci 115(6):3559–3567CrossRefGoogle Scholar
  22. Liang J, Ding C, Wei Z, Sang L, Song P, Chen G, Chang Y, Xu J, Zhang W (2015) Mechanical, morphology, and thermal properties of carbon fiber reinforced poly(butylene succinate) composites. Polym Compos 36(7):1335–1345CrossRefGoogle Scholar
  23. Likittheerakarn S, Kurdpradid S, Smittipornpun N, Sritapunya T (2017) Comparison of mechanical properties of biocomposites between polybutylene succinate/corn silk and polybutylene succinate/cellulose extracted from corn silk. Key Eng Mater 737:275–280CrossRefGoogle Scholar
  24. Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6(10):5384–5393CrossRefPubMedGoogle Scholar
  25. Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83(4):1834–1842CrossRefGoogle Scholar
  26. Luzi F, Fortunati E, Jiménez A, Puglia D, Pezzolla D, Gigliotti G, Kenny JM, Chiralt A, Torre L (2016) Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crops Prod 93:276–289CrossRefGoogle Scholar
  27. Miao C, Hamad WY (2016) Alkenylation of cellulose nanocrystals (CNC) and their applications. Polymer 101:338–346CrossRefGoogle Scholar
  28. Miyata T, Masuko T (1998) Crystallization behaviour of poly(tetramethylene succinate). Polymer 39(6–7):1399–1404CrossRefGoogle Scholar
  29. Motte HDL, Hasani M, Brelid H, Westman G (2011) Molecular characterization of hydrolyzed cationized nanocrystalline cellulose, cotton cellulose and softwood kraft pulp using high resolution 1D and 2D NMR. Carbohydr Polym 85(4):738–746CrossRefGoogle Scholar
  30. Nagalakshmaiah M, El Kissi N, Dufresne A (2016) Ionic compatibilization of cellulose nanocrystals with quaternary ammonium salt and their melt extrusion with polypropylene. ACS Appl Mater Interfaces 8(13):8755–8764CrossRefPubMedGoogle Scholar
  31. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501CrossRefGoogle Scholar
  32. Ng HM, Sin LT, Tee TT, Bee ST, Hui D, Low CY, Rahmat AR (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B Eng 75:176–200CrossRefGoogle Scholar
  33. Ogawa K, Hirai I, Shimasaki C, Yoshimura T, Ono S, Rengakuji S, Nakamura Y, Yamazaki I (1999) Simple determination method of degree of substitution for starch acetate. Bull Chem Soc Jpn 72(12):2785–2790CrossRefGoogle Scholar
  34. Papageorgiou GZ, Bikiaris DN (2005) Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer 46(26):12081–12092CrossRefGoogle Scholar
  35. Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320(1):248–258CrossRefGoogle Scholar
  36. Pinheiro IF, Ferreira FV, Souza DHS, Gouveia RF, Lona LMF, Morales AR, Mei LHI (2017) Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals. Eur Polym J 97:356–365CrossRefGoogle Scholar
  37. Poaty B, Vardanyan V, Wilczak L, Chauve G, Riedl B (2014) Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings. Prog Org Coat 77(4):813–820CrossRefGoogle Scholar
  38. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr., Hallett JP, Leak DJ, Liotta CL (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489CrossRefPubMedGoogle Scholar
  39. Shang W, Huang J, Luo H, Chang PR, Feng J, Xie G (2013) Hydrophobic modification of cellulose nanocrystal via covalently grafting of castor oil. Cellulose 20(1):179–190CrossRefGoogle Scholar
  40. Silverio HA, Neto WPF, Dantas ON, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44(2):427–436CrossRefGoogle Scholar
  41. Spinella S, Re GL, Liu B, Dorgan J, Habibi Y, Leclère P, Raquez JM, Dubois P, Gross RA (2015) Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer 65:9–17CrossRefGoogle Scholar
  42. Tang Y, Yang S, Zhang N, Zhang J (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21(1):335–346CrossRefGoogle Scholar
  43. Vahik K, Pochan D (2004) Unusual crystallization behavior of organoclay reinforced poly(l-lactic acid) nanocomposites. Macromolecules 37(17):6480–6491CrossRefGoogle Scholar
  44. Xue MD, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32CrossRefGoogle Scholar
  45. Zeng RT, Hu W, Wang M, Zhang SD, Zeng JB (2016) Morphology, rheological and crystallization behavior in non-covalently functionalized carbon nanotube reinforced poly(butylene succinate) nanocomposites with low percolation threshold. Polym Test 50:182–190CrossRefGoogle Scholar
  46. Zhang X, Yong Z (2016) Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends. Carbohydr Polym 140:374–382CrossRefPubMedGoogle Scholar
  47. Zhou M, Li Y, He C, Jin T, Wang K, Fu Q (2014) Interfacial crystallization enhanced interfacial interaction of poly(butylene succinate)/ramie fiber biocomposites using dopamine as a modifier. Compos Sci Technol 91(2):22–29CrossRefGoogle Scholar
  48. Zhou L, He H, Li MC, Huang S, Mei C, Wu Q (2018a) Enhancing mechanical properties of poly(lactic acid) through its in situ crosslinking with maleic anhydride-modified cellulose nanocrystals from cottonseed hulls. Ind Crops Prod 112:449–459CrossRefGoogle Scholar
  49. Zhou L, He H, Li MC, Huang S, Mei C, Wu Q (2018b) Grafting polycaprolactone diol onto cellulose nanocrystals via click chemistry: enhancing thermal stability and hydrophobic property. Carbohydr Polym 189:331–341CrossRefPubMedGoogle Scholar
  50. Zhu B, Li J, He Y, Osanai Y, Matsumura S, Inoue Y (2003) Thermal and infrared spectroscopic studies on hydrogen-bonding interaction of biodegradable poly(3-hydroxybutyrate)s with natural polyphenol catechin. Green Chem 5(5):580–586CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Canqing Wu
    • 1
  • Xuzhen Zhang
    • 1
    Email author
  • Xiuhua Wang
    • 1
  • Qingwen Gao
    • 1
  • Xinan Li
    • 1
  1. 1.The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and TextileZhejiang Sci-Tech UniversityHangzhouChina

Personalised recommendations