Advertisement

Cellulose

, Volume 26, Issue 5, pp 3143–3153 | Cite as

Cellulose nanosheets formed by mild additive-free ball milling

  • Yunxiu Zhang
  • Shigenori Kuga
  • Min WuEmail author
  • Yong HuangEmail author
Original Research
  • 216 Downloads

Abstract

Cellulose nanosheets similar to those obtained by milling with silicone oil (Zhao et al. in Cellulose 23:2809–2818, 2016) were obtained by mild additive-free milling followed by dispersion in ethanol. Typical nanosheets were of 4 nm thickness, possibly formed by monolayer association of elementary fibrils. The thickness decreased with prolonged milling to 2 nm or less, and the thinnest sheets observed were about 0.4 nm, corresponding to monomolecular layer of cellulose. Further milling caused disappearance of nanosheets due to complete decrystallization. This observation indicates that nanosheet formation is an intermediate stage of decrystallization of cellulose.

Graphical abstract

Keywords

Cellulose nanosheets Mild ball milling Elementary fibril Monomolecular sheet 

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 51733009) and Chinese Academy of Sciences Visiting Professorships.

References

  1. Abe K (2016) Nanofibrillation of dried pulp in NaOH solutions using bead milling. Cellulose 23:1257–1261CrossRefGoogle Scholar
  2. Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733CrossRefGoogle Scholar
  3. Ago M, Endo T, Okajima K (2007) Effect of solvent on morphological and structural change of cellulose under ball-milling. Polym J 39:435–441CrossRefGoogle Scholar
  4. Avolio R, Bonadies I, Capitani D, Errico ME, Gentile G, Avella M (2012) A multitechnique approach to assess the effect of ball milling on cellulose. Carbohyd Polym 87:265–273CrossRefGoogle Scholar
  5. Cervin NT, Aulin C, Larsson PT, Wagberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410CrossRefGoogle Scholar
  6. Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606CrossRefPubMedGoogle Scholar
  7. Edwards HGM, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta A Mol Biomol Spectrosc 53:2383–2392CrossRefGoogle Scholar
  8. Eronen P, Osterberg M, Jaaskelainen A-S (2009) Effect of alkaline treatment on cellulose supramolecular structure studied with combined confocal Raman spectroscopy and atomic force microscopy. Cellulose 16:167–178CrossRefGoogle Scholar
  9. Fengel D (1992) Characterization of cellulose by deconvoluting the oh valency range in FTIR spectra. Holzforschung 46:283–288CrossRefGoogle Scholar
  10. Fengel D (1993) Influence of water on the OH valency range in deconvoluted FTIR spectra of cellulose. Holzforschung 47:103–108CrossRefGoogle Scholar
  11. Gierlinger N, Schwanninger M (2006) Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol 140:1246–1254CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hamad WY (2008) Studies of deformation processes in cellulosics using Raman microscopy. In: Hu TQ (ed) Characterization of lignocellulosic materials. Blackwell Publishing Ltd., Oxford, pp 121–137Google Scholar
  13. Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2012) One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. Chemsuschem 5:2319–2322CrossRefPubMedGoogle Scholar
  14. Huang P, Zhao Y, Kuga S, Wu M, Huang Y (2016) A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale 8:3753–3759CrossRefPubMedGoogle Scholar
  15. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRefPubMedGoogle Scholar
  16. Jiang F, Esker AR, Roman M (2010) Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. Langmuir ACS J Surf Colloids 26:17919–17925CrossRefGoogle Scholar
  17. Kang X, Sun P, Kuga S, Wang C, Zhao Y, Wu M, Huang Y (2017) Thin cellulose nanofiber from corncob cellulose and its performance in transparent nanopaper. ACS Sustain Chem Eng 5:2529–2534CrossRefGoogle Scholar
  18. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393CrossRefPubMedGoogle Scholar
  19. Li Q, Renneckar S (2009) Molecularly thin nanoparticles from cellulose: isolation of sub-microfibrillar structures. Cellulose 16:1025–1032CrossRefGoogle Scholar
  20. Li Q, Renneckar S (2011) Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromolecules 12:650–659CrossRefPubMedGoogle Scholar
  21. Marechal Y, Chanzy H (2000) The hydrogen bond network in I-beta cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRefGoogle Scholar
  22. Mohan T, Spirk S, Kargl R, Doliska A, Vesel A, Salzmann I, Resel R, Ribitsch V, Stana-Kleinschek K (2012) Exploring the rearrangement of amorphous cellulose model thin films upon heat treatment. Soft Matter 8:9807–9815CrossRefGoogle Scholar
  23. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMedGoogle Scholar
  24. Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249CrossRefGoogle Scholar
  25. Nishiyama Y (2018) Molecular interactions in nanocellulose assembly. Philos Trans R Soc Math Phys Eng Sci 376(2112):20170047CrossRefGoogle Scholar
  26. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of x-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRefPubMedGoogle Scholar
  27. Qian XH, Ding SY, Nimlos MR, Johnson DK, Himmel ME (2005) Atomic and electronic structures of molecular crystalline cellulose I beta: a first-principles investigation. Macromolecules 38:10580–10589CrossRefGoogle Scholar
  28. Rao X, Kuga S, Wu M, Huang Y (2015) Influence of solvent polarity on surface-fluorination of cellulose nanofiber by ball milling. Cellulose 22:2341–2348CrossRefGoogle Scholar
  29. Sato K, Mochizuki H, Okajima K, Yamane C (2004) Effects of hydrophobic solvents on x-ray diffraction patterns of regenerated cellulose membrane. Polym J 36:478–482CrossRefGoogle Scholar
  30. Schenzel K, Fischer S, Brendler E (2005) New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose 12:223–231CrossRefGoogle Scholar
  31. Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRefGoogle Scholar
  32. Segal L, Creely JJ Jr, Martin AE (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794CrossRefGoogle Scholar
  33. Shopsowitz KE, Stahl A, Hamad WY, MacLachlan MJ (2012) Hard templating of nanocrystalline titanium dioxide with chiral nematic ordering. Angew Chem Int Ed Engl 51:6886–6890CrossRefPubMedGoogle Scholar
  34. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  35. Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7:415–418CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zhao M, Kuga S, Jiang S, Wu M, Huang Y (2016) Cellulose nanosheets induced by mechanical impacts under hydrophobic environment. Cellulose 23:2809–2818CrossRefGoogle Scholar
  37. Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations