Advertisement

Cellulose

pp 1–16 | Cite as

Cellulose nanocrystals in aqueous suspensions: rheology of lyotropic chiral liquid crystals

  • Juan M. Buffa
  • Ulises Casado
  • Verónica Mucci
  • Mirta I. ArangurenEmail author
Original Research
  • 65 Downloads

Abstract

A thorough rheological study of the behavior of cellulose nanocrystals (CNC) in water was undertaken, focusing on the main characteristics of rod-like suspensions that allign under flow and can display liquid crystal behavior at rest, in at least a range of concentrations. The effect of adding a dispersing agent (gum arabic, GA) to the suspension was analyzed, and different surface treatments were also performed on the CNC using TEMPO, chloro(dodecyl)dimethylsilane and trimethoxysilyl propylmethacrylate, named as TCNC, DCNC and MCNC respectively. The CNC, TCNC and the suspensions prepared with added GA formed stable suspensions with a concentration range in which isotropic and anisotropic (self-organized) phases coexisted in equilibrium. On the other hand, the aqueous suspensions of the two silanized CNCs only displayed flow-induced ordering, with a similar type of rheological behavior to the other nanocrystal suspensions, although with obvious quantitative differences. These latter ones were not stable suspensions and precipitated after a few hours of rest. The rheological tests included steady shear, dynamic oscillations and start-up of steady shear that were performed for all the nanocrystals suspensions prepared at different concentrations. Differences observed were related to the crystals surface modifications or addition of the dispersing agent. A persistent periodic oscillation of the viscosity was measured in the start-up of steady shear tests and the periods of the oscillations were determined and related to the different types of crystals considered.

Graphical abstract

Keywords

Cellulose nanocrystals Liquid crystals Rheology Tumbling Viscosity 

Notes

Acknowledgments

The authors acknowledge the funding from ANPCyT (PICT 162034) and UNMdP (15/G494-ING500/17). J.M. Buffa thanks CONICET for a doctoral fellowship.

Supplementary material

10570_2019_2278_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2412 kb)

References

  1. Asada T, Muramatsu H, Watanabe R, Onogi S (1980) Rheooptical Studies of Racemic Poly(γ-Benzyl Glutamate) Liquid Crystals. Macromolecules 13(4):867–871CrossRefGoogle Scholar
  2. Beekmans F (1997) Rheology and changes in structure of thermotropic liquid crystalline polymers. Technische Universiteit Delft, DelftGoogle Scholar
  3. Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33(16):6011–6016CrossRefGoogle Scholar
  4. Buffa JM, Grela MA, Aranguren MI, Mucci V (2016) EPR spectroscopy applied to the study of the TEMPO mediated oxidation of nanocellulose. Carbohydr Polym 136:744–749CrossRefGoogle Scholar
  5. Emerton HW, Wrist PE, Sikorski J, Woods HJ (1952) Electron-microscopy of degraded cellulose fibres. J Text Inst Trans 43(11):T563–T564CrossRefGoogle Scholar
  6. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRefGoogle Scholar
  7. Fuller GG, Burghardt WR (1991) Role of director tumbling in the rheology of polymer liquid crystal solutions. Macromolecules 24(9):2546–2555CrossRefGoogle Scholar
  8. Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):2645–2651CrossRefGoogle Scholar
  9. Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45(5):1569–1575CrossRefGoogle Scholar
  10. Honorato-Rios C, Kuhnhold A, Bruckner JR, Dannert R, Schilling T, Lagerwall JPF (2016) Equilibrium liquid crystal phase diagrams and detection of kinetic arrest in cellulose nanocrystal suspensions. Front Mater 3:21.  https://doi.org/10.3389/fmats.2016.00021 CrossRefGoogle Scholar
  11. Kiss G, Porter RS (1996) Rheology of concentrated solutions of poly(γ-benzyl-glutamate). J Polym Sci, Part B: Polym Phys 34(14):2271–2289CrossRefGoogle Scholar
  12. Kiss G, Porter RS (1998) Flow induced phenomena of lyotropic polymer liquid crystals: the negative normal force effect and bands perpendicular to shear. In: Brostow W (ed) Mechanical and thermophysical properties of polymer liquid crystals. Springer, Boston, pp 342–406CrossRefGoogle Scholar
  13. Larson RG (1990) Arrested tumbling in shearing flows of liquid crystal polymers. Macromolecules 23:3983–3992CrossRefGoogle Scholar
  14. Larson RG (1993) Roll-cell instabilities in shearing flows of nematic polymers. J Rheol 37:175CrossRefGoogle Scholar
  15. Lee HC, Brant DA (2002) Rheology of concentrated isotropic and anisotropic xanthan solutions. 1. A rodlike low molecular weight sample. Macromolecules 35(6):2212–2222CrossRefGoogle Scholar
  16. Li J, Revol JF, Marchessault RH (1996) Rheological properties of aqueous suspensions of chitin crystallites. J Colloid Interface Sci 183:365–373CrossRefGoogle Scholar
  17. Li J, Revol JF, Marchessault RH (1997) Effect of N-sulfonation on the colloidal and liquid crystal behavior of chitin crystallites. J Colloid Interface Sci 192(2):447–457CrossRefGoogle Scholar
  18. Liu D, Chen X, Yue Y, Chen M, Wu Q (2011) Structure and rheology of nanocrystalline cellulose. Carbohydr Polym 84(1):316–322CrossRefGoogle Scholar
  19. Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184(4686):632–633CrossRefGoogle Scholar
  20. Marcovich NE, Reboredo MM, Aranguren MI (2001) Modified woodflour as thermoset fillers II. Thermal degradation of woodflours and composites. Thermochim Acta 372(1–2):45–57CrossRefGoogle Scholar
  21. Menzel AM (2015) Tuned, driven, and active soft matter. Phys Rep 554:1–45CrossRefGoogle Scholar
  22. Mewis J, Wagner NJ (2012) Colloidal suspension rheology, 1st edn. Cambridge University Press, New YorkGoogle Scholar
  23. Mewis J, Mortier M, Vermant J, Moldenaers P (1997) Experimental evidence for the existence of a wagging regime in polymeric liquid crystals. Macromolecules 30(5):1323–1328CrossRefGoogle Scholar
  24. Moldenaers P, Mewis J (1990) Relaxational phenomena and anisotropy in lyotropic polymeric liquid-crystals. J Nonnewton Fluid Mech 34:359–374CrossRefGoogle Scholar
  25. Narimissa E, Rahman A, Gupta RK, Kao N, Bhattacharya S (2014) Anomalous first normal stress difference behavior of polymer nanocomposites and liquid crystalline polymer composites. Polym Eng Sci 47:21–25Google Scholar
  26. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10CrossRefGoogle Scholar
  27. Picken SJ, Aerts J, Doppert HL, Reuvers AJ, Northolt MG (1991) Structure and rheology of aramid solutions: transient rheological and rheooptical measurements. Macromolecules 24(6):1366–1375CrossRefGoogle Scholar
  28. Rahman A (2013) Rheology of thermotropic liquid crystal polymers for injection moulding. Royal Melbourne Institute of TechnologyGoogle Scholar
  29. Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172CrossRefGoogle Scholar
  30. Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28(49):17124–17133CrossRefGoogle Scholar
  31. Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2013) Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions. Rheol Acta 52:741–751CrossRefGoogle Scholar
  32. Ureña-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44:8990–8998CrossRefGoogle Scholar
  33. Vermant J, Moldenaers P, Picken SJ, Mewis J (1994) A comparison between texture and rheological behavior of lyotropic liquid-crystalline polymers during flow. J Nonnewton Fluid Mech 53:1–23CrossRefGoogle Scholar
  34. Walker LM, Wagner NJ, Larson RG, Mirau PA, Moldenaers P (1995) The rheology of highly concentrated PBLG solutions. J Rheol 39(5):925–952CrossRefGoogle Scholar
  35. Wissbrun KF (1981) Rheology of rod-like polymers in the liquid crystalline state. J Rheol 25(6):619–662CrossRefGoogle Scholar
  36. Xu T (2014) Inorganic nanocylinder lyotropic liquid crystals: rheology, phase behavior and film self-assembly. Ph.D. thesis, Auburn University. https://etd.auburn.edu/handle/10415/4072
  37. Xu T, Davis VA (2015) Rheology and shear-induced textures of silver nanowire lyotropic liquid crystals. J Nanomater 2015:9Google Scholar
  38. Zakharov AV, Vakulenko AA, Thoen J (2003) Tumbling instability in a shearing nematic liquid crystal: analysis of broadband dielectric results and theoretical treatment. J Chem Phys 118(9):4253–4260CrossRefGoogle Scholar
  39. Zhou YM, Fu SY, Zheng LM, Zhan HY (2012) Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films. Express Polym Lett 6(10):794–804CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Juan M. Buffa
    • 1
  • Ulises Casado
    • 1
  • Verónica Mucci
    • 1
  • Mirta I. Aranguren
    • 1
    Email author
  1. 1.Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA)Universidad Nacional de Mar del Plata-CONICETMar del PlataArgentina

Personalised recommendations