Advertisement

Cellulose

, Volume 26, Issue 5, pp 3247–3253 | Cite as

Terahertz complex conductivity of nanofibrillar cellulose-PEDOT:PSS composite films

  • Takeya UnumaEmail author
  • Omou Kobayashi
  • Iffah F. A. Hamdany
  • Vinay Kumar
  • Jarkko J. Saarinen
Original Research

Abstract

We investigate the terahertz transmission through flexible composite films that contain nanofibrillar cellulose (NFC) and different blending percentages of the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The real part of terahertz complex conductivity is found to decrease with decreasing frequency for each NFC composite film and to approach a finite positive value dependent on the PEDOT:PSS blending percentage in the limit of zero frequency. Both the real and imaginary parts of complex conductivity spectra can be fitted simultaneously with an extended Drude model that describes a partially localized nature of carriers. Our spectral analysis indicates that carriers in the NFC composite become denser and also less localized as the PEDOT:PSS blending percentage is increased.

Graphical abstract

Keywords

Nanofibrillar cellulose Conducting polymers Composite films Terahertz spectroscopy Charge transport 

Notes

Acknowledgments

This work was partly supported by a Nagaoka University of Technology Presidential Research Grant. J. J. S. wishes to thank the UEF Faculty of Science and Forestry (Grant No. 579/2017) for the financial support. Åbo Akademi University (Laboratory of Paper Coating and Converting) and South China University of Technology (State Key Laboratory of Pulp and Paper Engineering) are acknowledged for laboratory access during the sample preparation and for producing NFC suspensions, respectively.

References

  1. Ai X, Beard MC, Knutsen KP, Shaheen SE, Rumbles G, Ellingson RJ (2006) Photoinduced charge carrier generation in a poly(3-hexylthiophene) and methanofullerene bulk heterojunction investigated by time-resolved terahertz spectroscopy. J Phys Chem B 110:25462–25471CrossRefPubMedGoogle Scholar
  2. Aleshin AN, Berestennikov AS, Krylov PS, Shcherbakov IP, Petrov VN, Trapeznikova IN, Mamalimova RI, Khripunov AK, Tkachenko AA (2015) Electrical and optical properties of bacterial cellulose films modified with conductive polymer PEDOT/PSS. Synth Met 199:147–151CrossRefGoogle Scholar
  3. Andrianov AV, Aleshin AN, Khripunov AK, Trukhin VN (2015) Terahertz properties of bacterial cellulose films and its composite with conducting polymer PEDOT/PSS. Synth Met 205:201–205CrossRefGoogle Scholar
  4. Baxter JB, Schmuttenmaer CA (2006) Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J Phys Chem B 110:25229–25239CrossRefPubMedGoogle Scholar
  5. Carnio BN, Ahvazi B, Elezzabi AY (2016) Terahertz properties of cellulose nanocrystals and films. J Infrared Millim Terahertz Waves 37:281–288CrossRefGoogle Scholar
  6. Cooke DG, MacDonald AN, Hryciw A, Wang J, Li Q, Meldrum A, Hegmann FA (2006) Transient terahertz conductivity in photoexcited silicon nanocrystal films. Phys Rev B 73:193311CrossRefGoogle Scholar
  7. Cooke DG, Krebs FC, Jepsen PU (2012) Direct observation of sub-100 fs mobile charge generation in a polymer–fullerene film. Phys Rev Lett 108:056603CrossRefPubMedGoogle Scholar
  8. Cunningham PD, Hayden LM (2008) Carrier dynamics resulting from above and below gap excitation of P3HT and P3HT/PCBM investigated by optical-pump terahertz-probe spectroscopy. J Phys Chem C 112:7928–7935CrossRefGoogle Scholar
  9. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mat Today 16:220–227CrossRefGoogle Scholar
  10. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRefGoogle Scholar
  11. Elfwing A, Ponseca CS Jr, Ouyang L, Urbanowicz A, Krotkus A, Tu D, Forchheimer R, Inganäs O (2018) Conducting helical structures from celery decorated with a metallic conjugated polymer give resonances in the terahertz range. Adv Funct Mater 28:1706595CrossRefGoogle Scholar
  12. Ferguson B, Zhang X-C (2002) Materials for terahertz science and technology. Nat Mater 1:26–33CrossRefPubMedGoogle Scholar
  13. Fujisaki Y, Koga H, Nakajima Y, Nakata M, Tsuji H, Yamamoto T, Kurita T, Nogi M, Shimidzu N (2014) Transparent nanopaper-based flexible organic thin-film transistor array. Adv Funct Mater 24:1657–1663CrossRefGoogle Scholar
  14. Furukawa Y (1996) Electronic absorption and vibrational spectroscopies of conjugated conducting polymers. J Phys Chem 100:15644–15653CrossRefGoogle Scholar
  15. Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT, McGehee MD, Wagberg L, Cui Y (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6:513–518CrossRefGoogle Scholar
  16. Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113CrossRefPubMedGoogle Scholar
  17. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRefPubMedGoogle Scholar
  18. Jung YH, Chang T-H, Zhang H, Yao C, Zheng Q, Yang VW, Mi H, Kim M, Cho SJ, Park D-W, Jiang H, Lee J, Qiu Y, Zhou W, Cai Z, Gong S, Ma Z (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170CrossRefPubMedPubMedCentralGoogle Scholar
  19. Khan S, Ul-Islam M, Khattak WA, Ullah MW, Park JK (2015) Bacterial cellulose-poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composites for optoelectronic applications. Carbohydr Polym 127:86–93CrossRefPubMedGoogle Scholar
  20. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRefGoogle Scholar
  21. Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromolecules 14:1160–1165CrossRefPubMedGoogle Scholar
  22. Lee K, Heeger AJ, Cao Y (1993) Reflectance of polyaniline protonated with camphor sulfonic acid: disordered metal on the metal–insulator boundary. Phys Rev B 48:14884–14891CrossRefGoogle Scholar
  23. Lee K, Menon R, Yoon CO, Heeger AJ (1995) Reflectance of conducting polypyrrole: observation of the metal–insulator transition driven by disorder. Phys Rev B 52:4779–4787CrossRefGoogle Scholar
  24. Lloyd-Hughes J, Jeon T-I (2012) A review of the terahertz conductivity of bulk and nano-materials. J Infrared Millim Terahertz Waves 33:871–925CrossRefGoogle Scholar
  25. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMedGoogle Scholar
  26. Müller D, Rambo CR, Recouvreux DOS, Porto LM, Barra GMO (2011) Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met 161:106–111CrossRefGoogle Scholar
  27. Nogi M, Karakawa M, Komoda N, Yagyu H, Nge TT (2015) Transparent conductive nanofiber paper for foldable solar cells. Sci Rep 5:17254CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23:3751–3769PubMedGoogle Scholar
  29. Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114:4178–4182CrossRefPubMedPubMedCentralGoogle Scholar
  30. Penttilä A, Sievänen J, Torvinen K, Ojanperä K, Ketoja JA (2013) Filler-nanocellulose substrate for printed electronics: experiments and model approach to structure and conductivity. Cellulose 20:1413–1424CrossRefGoogle Scholar
  31. Salajkova M, Valentini L, Zhou Q, Berglund LA (2013) Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes. Compos Sci Technol 87:103–110CrossRefGoogle Scholar
  32. Smith NV (2001) Classical generalization of the Drude formula for the optical conductivity. Phys Rev B 64:155106CrossRefGoogle Scholar
  33. Tobjörk D, Österbacka R (2011) Paper electronics. Adv Mater 23:1935–1961CrossRefPubMedGoogle Scholar
  34. Torvinen K, Sievänen J, Hjelt T, Hellén E (2012) Smooth and flexible filler-nanocellulose composite structure for printed electronics applications. Cellulose 19:821–829CrossRefGoogle Scholar
  35. Turner GM, Beard MC, Schmuttenmaer CA (2002) Carrier localization and cooling in dye-sensitized nanocrystalline titanium dioxide. J Phys Chem B 106:11716–11719CrossRefGoogle Scholar
  36. Unuma T, Fujii K, Kishida H, Nakamura A (2010) Terahertz complex conductivities of carriers with partial localization in doped polythiophenes. Appl Phys Lett 97:033308CrossRefGoogle Scholar
  37. Unuma T, Umemoto A, Kishida H (2013a) Anisotropic terahertz complex conductivities in oriented polythiophene films. Appl Phys Lett 103:213305CrossRefGoogle Scholar
  38. Unuma T, Yamada N, Nakamura A, Kishida H, Lee S-C, Hong E-Y, Lee S-H, Kwon O-P (2013b) Direct observation of carrier delocalization in highly conducting polyaniline. Appl Phys Lett 103:053303CrossRefGoogle Scholar
  39. Valtakari D, Liu J, Kumar V, Xu C, Toivakka M, Saarinen JJ (2015) Conductivity of PEDOT:PSS on spin-coated and drop cast nanofibrillar cellulose thin films. Nanoscale Res Lett 10:386CrossRefPubMedPubMedCentralGoogle Scholar
  40. Van den Berg O, Schroeter M, Capadonaac JR, Weder C (2007) Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers. J Mater Chem 17:2746–2753CrossRefGoogle Scholar
  41. Walther M, Cooke DG, Sherstan C, Hajar M, Freeman MR, Hegmann FA (2007) Terahertz conductivity of thin gold films at the metal–insulator percolation transition. Phys Rev B 76:125408CrossRefGoogle Scholar
  42. Wang X, Gao K, Shao Z, Peng X, Wu X, Wang F (2014) Layer-by-layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications. J Power Sour 249:148–155CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Electrical, Electronics and Information EngineeringNagaoka University of TechnologyNagaokaJapan
  2. 2.High Performance Fiber ProductsVTT Technical Research Centre of Finland LtdEspooFinland
  3. 3.Department of ChemistryUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations