Advertisement

Cellulose

, Volume 26, Issue 5, pp 3205–3218 | Cite as

Effectiveness of cellulosic Agave angustifolia fibres on the performance of compatibilised poly(lactic acid)-natural rubber blends

  • Noor Afizah Rosli
  • Ishak AhmadEmail author
  • Farah Hannan Anuar
  • Ibrahim Abdullah
Original Research
  • 120 Downloads

Abstract

In this study, A. angustifolia cellulose was tested as a potential fibre for use in biocomposites based on a polylactic acid (PLA)/natural rubber (NR) blend compatibilised with liquid natural rubber. Biocomposite analyses were performed via mechanical, physical, morphological, thermal, and biodegradation characterisations to evaluate the influence of the cellulose content on the properties of biocomposites. The addition of Agave cellulose improved the tensile properties of the biocomposites with biocomposites reinforced by 7.5 wt% cellulose showing maximum tensile strength. Differential scanning calorimetry analysis showed that Agave cellulose acts as a nucleating agent for PLA, and the thermal stability improved up to 6% upon cellulose addition. Soil burial tests revealed that the biodegradability, which is directly influenced by the water absorption of the biocomposites, increased with increasing cellulose addition. Finally, water absorption tests indicated that biocomposites with low water resistance increase the degradation rates of the PLA–NR blends.

Graphical abstract

Keywords

Cellulose Liquid natural rubber Melt blending Soil burial 

Notes

Acknowledgments

This work was supported by research Grants [FRGS-MRSA/1/2016/STG07/UKM/01/1] and [GUP-2018–028] provided by the Ministry of Education, Malaysia (MOE), and Universiti Kebangsaan Malaysia (UKM). The authors would also like to thank Dr. Md. Akhir Hamid from the Malaysian Agriculture Research and Development Institute (MARDI) for the processing of raw agave fibres.

References

  1. Bao RY, Yang W, Liu ZY, Xie BH, Yang MB (2015) Polymorphism of a high-molecular-weight racemic poly (l-lactide)/poly(d-lactide) blend: effect of melt blending with poly (methyl methacrylate). RSC Adv 5:19058–19066CrossRefGoogle Scholar
  2. Battegazzore D, Bocchini S, Alongi J, Frache A, Marino F (2014) Cellulose extracted from rice husk as filler for poly (lactic acid): preparation and characterization. Cellulose 21:1813–1821CrossRefGoogle Scholar
  3. Bax B, Müssig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68:1601–1607CrossRefGoogle Scholar
  4. Bitinis N, Verdejo R, Cassagnau P, Lopez-Manchado MA (2011) Structure and properties of polylactide/natural rubber blends. Mater Chem Phys 129:823–831CrossRefGoogle Scholar
  5. Bitinis N, Fortunati E, Verdejo R, Bras J, Kenny JM, Torre L, López-Manchado MA (2013) Poly (lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites part II: properties evaluation. Carbohydr Polym 96:621–627CrossRefPubMedGoogle Scholar
  6. Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crops Prod 32:627–633CrossRefGoogle Scholar
  7. Chumeka W, Tanrattanakul V, Pilard JF, Pasetto P (2013) Effect of poly (vinyl acetate) on mechanical properties and characteristics of poly (lactic acid)/natural rubber blends. J Polym Environ 21:450–460CrossRefGoogle Scholar
  8. Chumeka W, Pasetto P, Pilard JF, Tanrattanakul V (2014) Bio-based triblock copolymers from natural rubber and poly (lactic acid): synthesis and application in polymer blending. Polymer 55:4478–4487CrossRefGoogle Scholar
  9. De SK, White JR (1996) Short fibre-polymer composites. Woodhead Publishing Limited, EnglandCrossRefGoogle Scholar
  10. Ding W, Chu RK, Mark LH, Park CB, Sain M (2015) Non-isothermal crystallization behaviors of poly(lactic acid)/cellulose nanofiber composites in the presence of CO2. Eur Polym J 71:231–247CrossRefGoogle Scholar
  11. Dogu B, Kaynak C (2016) Behavior of polylactide/microcrystalline cellulose biocomposites: effects of filler content and interfacial compatibilization. Cellulose 23:611–622CrossRefGoogle Scholar
  12. Garlotta D, Doane W, Shogren R, Lawton J, Willett JL (2003) Mechanical and thermal properties of starch-filled poly(d, l-lactic acid)/poly(hydroxy ester ether) biodegradable blends. J Appl Polym Sci 88:1775–1786CrossRefGoogle Scholar
  13. Goriparthi BK, Suman KNS, Rao NM (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos Part A Appl Sci Manuf 43:1800–1808CrossRefGoogle Scholar
  14. Groeninckx G, Vanneste M, Everaert V (2002) Polymer blends handbook. Academic Publishers, KluwerGoogle Scholar
  15. Hassan A, Wahit MU, Chee CY (2003) Mechanical and morphological properties of PP/NR/LLDPE ternary blend–effect of HVA-2. Polym Test 22:281–290CrossRefGoogle Scholar
  16. Ismail H, Jaffri RM, Rozman HD (2003) The effects of filler loading and vulcanisation system on properties of oil palm wood flour-natural rubber composites. J Elastom Plast 35:181–192CrossRefGoogle Scholar
  17. Jaratrotkamjorn R, Khaokong C, Tanrattanakul V (2012) Toughness enhancement of poly (lactic acid) by melt blending with natural rubber. J Appl Polym Sci 124:5027–5036Google Scholar
  18. Karnani R, Krishnan M, Narayan R (1997) Biofiber-reinforced polypropylene composites. Polym Eng Sci 37:476–483CrossRefGoogle Scholar
  19. Ke T, Sun SX, Seib P (2003) Blending of poly(lactic acid) and starches containing varying amylose content. J Appl Polym Sci 89:3639–3646CrossRefGoogle Scholar
  20. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501CrossRefGoogle Scholar
  21. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. CRC Press, Madison AvenueGoogle Scholar
  22. Odent J, Raquez JM, Leclère P, Lauro F, Dubois P (2015) Crystallization-induced toughness of rubber-modified polylactide: combined effects of biodegradable impact modifier and effective nucleating agent. Polym Adv Technol 26:814–822CrossRefGoogle Scholar
  23. Pongtanayut K, Thongpin C, Santawitee O (2013) The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends. Energy Procedia 34:888–897CrossRefGoogle Scholar
  24. Rosli NA, Ahmad I, Abdullah I (2013) Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. BioResources 8:1893–1908CrossRefGoogle Scholar
  25. Rosli NA, Ahmad I, Anuar FH, Abdullah I (2016) Mechanical and thermal properties of natural rubber-modified poly (lactic acid) compatibilized with telechelic liquid natural rubber. Polym Test 54:196–202CrossRefGoogle Scholar
  26. Rosli NA, Ahmad I, Anuar FH, Abdullah I (2018) The contribution of eco-friendly bio-based blends on enhancing the thermal stability and biodegradability of poly (lactic acid). J Clean Prod 198:987–995CrossRefGoogle Scholar
  27. Shah BL, Selke SE, Walters MB, Heiden PA (2008) Effects of wood flour and chitosan on mechanical, chemical, and thermal properties of polylactide. Polym Compos 29:655–663CrossRefGoogle Scholar
  28. Tawakkal ISM, Talib RA, Abdan K, Ling CN (2012) Mechanical and physical properties of kenaf-derived cellulose (KDC)-filled polylactic acid (PLA) composites. BioResources 7:1643–1655CrossRefGoogle Scholar
  29. Teramoto N, Urata K, Ozawa K, Shibata M (2004) Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym Degrad Stab 86:401–409CrossRefGoogle Scholar
  30. Thepthawat A, Srikulkit K (2014) Improving the properties of polylactic acid by blending with low molecular weight polylactic acid-g-natural rubber. Polym Eng Sci 54:2770–2776CrossRefGoogle Scholar
  31. Thomas MG, Abraham E, Jyotishkumar P, Maria HJ, Pothen LA, Thomas S (2015) Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization. Int J Biol Macromol 81:768–777CrossRefPubMedGoogle Scholar
  32. Tronc E, Hernandez-Escobar CA, Ibarra-Gomez R, Estrada-Monje A, Navarrete-Bolanos J, Zaragoza-Contreras EA (2007) Blue agave fiber esterification for the reinforcement of thermoplastic composites. Carbohydr Polym 67:245–255CrossRefGoogle Scholar
  33. Visakh PM, Thomas S, Oksman K, Mathew AP (2012) Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: processing and mechanical/thermal properties. Compos Part A Appl Sci Manuf 43:735–741CrossRefGoogle Scholar
  34. Wang H, Sun X, Seib P (2002) Mechanical properties of poly (lactic acid) and wheat starch blends with methylenediphenyl diisocyanate. J Appl Polym Sci 84:1257–1262CrossRefGoogle Scholar
  35. Yew GH, Yusof AM, Ishak ZM, Ishiaku US (2005) Water absorption and enzymatic degradation of poly (lactic acid)/rice starch composites. Polym Degrad Stab 90:488–500CrossRefGoogle Scholar
  36. Zhang L, Liu H (1996) Biodegradability of regenerated cellulose films in soil. Ind Eng Chem Res 35:4682–4685CrossRefGoogle Scholar
  37. Zhang C, Huang Y, Luo C, Jiang L, Dan Y (2013) Enhanced ductility of polylactide materials: reactive blending with pre-hot sheared natural rubber. J Polym Res 20:121CrossRefGoogle Scholar
  38. Zhang K, Nagarajan V, Misra M, Mohanty AK (2014) Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance. ACS Appl Mater Interfaces 6:12436–12448CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Noor Afizah Rosli
    • 1
  • Ishak Ahmad
    • 1
    Email author
  • Farah Hannan Anuar
    • 1
  • Ibrahim Abdullah
    • 1
  1. 1.Centre for Advanced Materials and Renewable Resources, Faculty of Science and TechnologyUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia

Personalised recommendations