Advertisement

Cellulose

, Volume 26, Issue 1, pp 631–645 | Cite as

In vitro analysis of the potential cartilage implant bacterial nanocellulose using the bovine cartilage punch model

  • Victoria Horbert
  • Peter Foehr
  • Friederike Kramer
  • Ulrike Udhardt
  • Matthias Bungartz
  • Olaf Brinkmann
  • Rainer H. Burgkart
  • Dieter O. Klemm
  • Raimund W. KinneEmail author
Original Paper
  • 7 Downloads

Abstract

Biocompatible bacterial nanocellulose (BNC) shows high potential as wound dressing and dura mater replacement, and even for the development of blood vessel or cartilage implants. Thus, the regenerative capacity of BNC implants was analyzed using a standardized bovine cartilage punch model. Cartilage rings with an outer diameter of 6 mm and an inner defect diameter of 2 mm were derived from the trochlear groove (femur-patellar articulation site). BNC implants were cultured inside the cartilage rings for up to 12 weeks. Cartilage-BNC-constructs were then evaluated by histology (hematoxylin/eosin; safranin O), immunohistology (aggrecan, collagens 1 and 2), and for protein content, mRNA expression, and push-out force of the implants. Cartilage-BNC-constructs displayed vital chondrocytes (≥ 90% until week 9; > 80% until 12 weeks), preserved matrix integrity during culture, limited loss of matrix-bound proteoglycan from ‘host’ cartilage or cartilage-BNC-interface, and constant release of proteoglycans into the culture supernatant. In addition, the content of the matrix protein collagen 2 in cartilage and cartilage-BNC-interface was approximately constant over time (with very limited quantities of collagen 1). Interestingly, BNC implants showed: (1) cell colonization of the implant; (2) progressively increasing mRNA levels for the proteoglycan aggrecan and collagen 2 (max. fivefold); and (3) significantly increasing push-out forces during culture (max. 1.6-fold). Retained tissue integrity and progressively increasing chondrogenic differentiation in implant and cartilage-implant-interface suggest beginning cartilage regeneration in the BNC in the present model and indicate a high potential of BNC as a cartilage replacement material. Thus, the present model appears suitable to predict the in vivo performance of cartilage replacement materials (e.g., BNC) for tissue engineering.

Graphical abstract

Keywords

Bovine cartilage punch model Bacterial nanocellulose Regeneration model Articular cartilage Implant push-out force 

Notes

Acknowledgments

The authors are grateful to Cordula Müller, Bäbel Ukena, and Ulrike Körner for expert technical assistance, as well as Maren Siedentop, Daniela Warnecke, and Fabian Holzner for expert biomechanical testing of implant push-out forces. We gratefully acknowledge the partial financial support of the Bundesministerium für Bildung und Forschung (BMBF), Grant references 13N12601 and 0315577C.

Compliance with ethical standards

Conflict of interest

There are no potential conflicts of interest for any of the authors regarding the research, authorship, and/or publication of this article.

Supplementary material

10570_2019_2260_MOESM1_ESM.tif (291 kb)
Supplementary material 1 (TIFF 290 kb)

References

  1. Ahrem H, Pretzel D, Endres M, Conrad D, Courseau J, Muller H, Jaeger R, Kaps C, Klemm DO, Kinne RW (2014) Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Acta Biomater 10:1341–1353CrossRefGoogle Scholar
  2. Avila HM, Schwarz S, Feldmann EM, Mantas A, von Bomhard A, Gatenholm P, Rotter N (2014) Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl Microbiol Biotechnol 98:7423–7435CrossRefGoogle Scholar
  3. Avila HM, Feldmann EM, Pleumeekers MM, Nimeskern L, Kuo W, de Jong WC, Schwarz S, Muller R, Hendriks J, Rotter N, van Osch GJ, Stok KS, Gatenholm P (2015) Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials 44:122–133CrossRefGoogle Scholar
  4. Bachmann G, Basad E, Lommel D, Steinmeyer J (2004) MRI in the follow-up of matrix-supported autologous chondrocyte transplantation (MACI) and microfracture. Radiologe 44:773–782CrossRefGoogle Scholar
  5. Bartlett WKSP, Skinner JA, Carrington RWJ, Briggs TWR, Bentley G (2006) Collagen-covered versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a comparison of tourniquet times. Eur J Orthop Surg Traumatol 16:315–317CrossRefGoogle Scholar
  6. Bodin A, Concaro S, Brittberg M, Gatenholm P (2007) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med 1:406–408CrossRefGoogle Scholar
  7. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) Cell profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100CrossRefGoogle Scholar
  8. Chandrasekhar S, Esterman MA, Hoffman HA (1987) Microdetermination of proteoglycans and glycosaminoglycans in the presence of guanidine hydrochloride. Anal Biochem 161:103–108CrossRefGoogle Scholar
  9. Dell’Accio F, De Bari C, El Tawil NM, Barone F, Mitsiadis TA, O’Dowd J, Pitzalis C (2006) Activation of WNT and BMP signaling in adult human articular cartilage following mechanical injury. Arthritis Res Ther 8:R139CrossRefGoogle Scholar
  10. Dewan AK, Gibson MA, Elisseeff JH, Trice ME (2014) Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques. Biomed Res Int 2014:272481CrossRefGoogle Scholar
  11. Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–177CrossRefGoogle Scholar
  12. Feldmann EM, Sundberg JF, Bobbili B, Schwarz S, Gatenholm P, Rotter N (2013) Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for reconstruction of a human auricle. J Biomater Appl 28:626–640CrossRefGoogle Scholar
  13. Gillogly SD, Wheeler KS (2015) Autologous chondrocyte implantation with collagen membrane. Sports Med Arthrosc 23:118–124CrossRefGoogle Scholar
  14. Gobbi A, Chaurasia S, Karnatzikos G, Nakamura N (2015) Matrix-induced autologous chondrocyte implantation versus multipotent stem cells for the treatment of large patellofemoral chondral lesions: a nonrandomized prospective trial. Cartilage 6:82–97CrossRefGoogle Scholar
  15. Horbert V, Xin L, Foehr P, Brinkmann O, Bungartz M, Burgkart RH, Graeve T, Kinne RW (2018) In vitro analysis of cartilage regeneration using a collagen type I hydrogel (CaReS) in the bovine cartilage punch model. Cartilage.  https://doi.org/10.1177/1947603518756985
  16. Horbert V, Boettcher J, Foehr P, Kramer F, Udhardt U, Bungartz M, Brinkmann O, Burgkart RH, Klemm DO, Kinne RW (2019) Laser perforation and cell seeding improve bacterial nanocellulose as a potential cartilage implant in the in vitro cartilage punch model. Cellulose 26.  https://doi.org/10.1007/s10570-019-02286-3 (This issue)
  17. Hunter CJ, Levenston ME (2004) Maturation and integration of tissue-engineered cartilages within an in vitro defect repair model. Tissue Eng 10:736–746CrossRefGoogle Scholar
  18. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. a review of the current status and prospects. Osteoarthr Cartil 10:432–463CrossRefGoogle Scholar
  19. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRefGoogle Scholar
  20. Kon E, Verdonk P, Condello V, Delcogliano M, Dhollander A, Filardo G, Pignotti E, Marcacci M (2009) Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee: systematic clinical data review and study quality analysis. Am J Sports Med 37(Suppl 1):156S–166SCrossRefGoogle Scholar
  21. Kowalska-Ludwicka K, Cala J, Grobelski B, Sygut D, Jesionek-Kupnicka D, Kolodziejczyk M, Bielecki S, Pasieka Z (2013) Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch Med Sci 9:527–534CrossRefGoogle Scholar
  22. Kunisch E, Maenz S, Knoblich M, Ploeger F, Jandt KD, Bossert J, Kinne RW, Alsalameh S (2017) Short-time pre-washing of brushite-forming calcium phosphate cement improves its in vitro cytocompatibility. Tissue Cell 49:697–710CrossRefGoogle Scholar
  23. Lang N, Merkel E, Fuchs F, Schumann D, Klemm D, Kramer F, Mayer-Wagner S, Schroeder C, Freudenthal F, Netz H, Kozlik-Feldmann R, Sigler M (2015) Bacterial nanocellulose as a new patch material for closure of ventricular septal defects in a pig model. Eur J Cardiothorac Surg 47:1013–1021CrossRefGoogle Scholar
  24. Lotz MK, Otsuki S, Grogan SP, Sah R, Terkeltaub R, D’Lima D (2010) Cartilage cell clusters. Arthr Rheumatol 62:2206–2218CrossRefGoogle Scholar
  25. Markstedt K, Mantas A, Tournier I, Martinez Avila H, Hagg D, Gatenholm P (2015) 3D Bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496CrossRefGoogle Scholar
  26. Moller T, Amoroso M, Hagg D, Brantsing C, Rotter N, Apelgren P, Lindahl A, Kolby L, Gatenholm P (2017) In vivo chondrogenesis in 3D bioprinted human cell-laden hydrogel constructs. Plast Reconstr Surg Glob Open 5:e1227CrossRefGoogle Scholar
  27. Morales TI (2007) Chondrocyte moves: clever strategies? Osteoarthr Cartil 15:861–871CrossRefGoogle Scholar
  28. Moretti M, Wendt D, Schaefer D, Jakob M, Hunziker EB, Heberer M, Martin I (2005) Structural characterization and reliable biomechanical assessment of integrative cartilage repair. J Biomech 38:1846–1854CrossRefGoogle Scholar
  29. Moritz S, Wiegand C, Wesarg F, Hessler N, Muller FA, Kralisch D, Hipler UC, Fischer D (2014) Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int J Pharm 471:45–55CrossRefGoogle Scholar
  30. Musumeci G, Castrogiovanni P, Leonardi R, Trovato FM, Szychlinska MA, Di Giunta A, Loreto C, Castorina S (2014) New perspectives for articular cartilage repair treatment through tissue engineering: a contemporary review. World J Orthop 5:80–88CrossRefGoogle Scholar
  31. Napavichayanun S, Yamdech R, Aramwit P (2016) The safety and efficacy of bacterial nanocellulose wound dressing incorporating sericin and polyhexamethylene biguanide: in vitro, in vivo and clinical studies. Arch Dermatol Res 308:123–132CrossRefGoogle Scholar
  32. Nimeskern L, Martinez Avila H, Sundberg J, Gatenholm P, Muller R, Stok KS (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21CrossRefGoogle Scholar
  33. Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, de Souza CF, Martin AA, da Silva R, de Freitas RA (2017) Bacterial cellulose in biomedical applications: a review. Int J Biol Macromol 104:97–106 CrossRefGoogle Scholar
  34. Pretzel D, Linss S, Ahrem H, Endres M, Kaps C, Klemm D, Kinne RW (2013) A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose. Arthritis Res Ther 15:R59CrossRefGoogle Scholar
  35. Saska S, Teixeira LN, de Castro Raucci LMS, Scarel-Caminaga RM, Franchi LP, Dos Santos RA, Santagneli SH, Capela MV, de Oliveira PT, Takahashi CS, Gaspar AMM, Messaddeq Y, Ribeiro SJL, Marchetto R (2017) Nanocellulose-collagen-apatite composite associated with osteogenic growth peptide for bone regeneration. Int J Biol Macromol 103:467–476CrossRefGoogle Scholar
  36. Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129CrossRefGoogle Scholar
  37. Schumann DA, Wippermann J, Klemm DO, Kramer F, Koth D, Kosmehl H, Wahlers T, Salehi-Gelani S (2009) Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose 16:877–885CrossRefGoogle Scholar
  38. Steinwachs M, Kreuz PC (2007) Autologous chondrocyte implantation in chondral defects of the knee with a type I/III collagen membrane: a prospective study with a 3-year follow-up. Arthroscopy 23:381–387CrossRefGoogle Scholar
  39. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431CrossRefGoogle Scholar
  40. Theodoropoulos JS, De Croos JN, Park SS, Pilliar R, Kandel RA (2011) Integration of tissue-engineered cartilage with host cartilage: an in vitro model. Clin Orthop Relat Res 469:2785–2795CrossRefGoogle Scholar
  41. Vinardell T, Thorpe SD, Buckley CT, Kelly DJ (2009) Chondrogenesis and integration of mesenchymal stem cells within an in vitro cartilage defect repair model. Ann Biomed Eng 37:2556–2565CrossRefGoogle Scholar
  42. Wippermann J, Schumann D, Klemm D, Kosmehl H, Salehi-Gelani S, Wahlers T (2009) Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose. Eur J Vasc Endovasc Surg 37:592–596CrossRefGoogle Scholar
  43. Ye K, Di Bella C, Myers DE, Choong PF (2014) The osteochondral dilemma: review of current management and future trends. ANZ J Surg 84:211–217CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Victoria Horbert
    • 1
  • Peter Foehr
    • 2
  • Friederike Kramer
    • 3
  • Ulrike Udhardt
    • 3
  • Matthias Bungartz
    • 4
  • Olaf Brinkmann
    • 4
  • Rainer H. Burgkart
    • 2
  • Dieter O. Klemm
    • 3
  • Raimund W. Kinne
    • 1
    Email author
  1. 1.Experimental Rheumatology Unit, Department of OrthopedicsJena University Hospital, Waldkrankenhaus “Rudolf Elle”EisenbergGermany
  2. 2.Biomechanics Laboratory, Department of Orthopedics and SportsorthopedicsKlinikum rechts der Isar, Technische Universität MünchenMunichGermany
  3. 3.Polymet Jena e.VJenaGermany
  4. 4.Department of OrthopedicsJena University Hospital, Waldkrankenhaus “Rudolf Elle”EisenbergGermany

Personalised recommendations