Advertisement

Cellulose

pp 1–8 | Cite as

Cellulose nanopaper with controllable optical haze and high efficiency ultraviolet blocking for flexible optoelectronics

  • Zhao ZhangEmail author
  • Fafa Song
  • Meng Zhang
  • Hui Chang
  • Xiya Zhang
  • Xinping LiEmail author
  • Xunjin Zhu
  • Xingqiang Lü
  • Yaoyu Wang
  • Kecheng Li
Communication

Abstract

For Zn-nanopapers obtained from grafting of Zn(II)-terpyridine complex (Zn-tpy) into tCNFs (2,2,6,6-tetramethylpiperidine-1-oxyl radical, TEMPO, oxidized cellulose nanofibrils), their optical hazes were first found to be highly dependent on alcohol-characteristic solvent stimulation. By addressing the controllable issue of benzyl alcohol (BA) disposal, the optical haze of Zn-nanopaper was adjusted to regulate from BA-induced instability wrinkling and swelling patterns, which was dictated by Zn-nanopaper thickness. Moreover, upon long-term UV radiation, these Zn-nanopapers exhibited stable UV-blocking, which, together with the optical haze adjustment, offered an opportunity for utilization in fluorescent lamps, flat panel displays or glass walls.

Graphical abstract

Keywords

Post-processing Controllable optical haze UV-blocking Zn(II)-terpyridine Oxidized cellulose nanofibrils 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (21703131, 31370578), Doctoral Scientific Research Foundation of Shaanxi University of Science and Technology (2016BJ-40). State Key Laboratory of Pulp and Paper Engineering (201821).

Supplementary material

10570_2019_2253_MOESM1_ESM.doc (1.8 mb)
Supplementary material 1 (DOC 1825 kb)

References

  1. Barrett EP, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  2. Bejoy T, Midhun CR, Athira KB, Rubiyah MH, Jithin J, Audrey M, Glenna LD, Clément S (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev.  https://doi.org/10.1021/acs.chemrev.7b00627 Google Scholar
  3. Chen L, Ye J, Wang H, Pan M, Yin S, Wei Z, Zhang L, Wu K, Fan Y, Su C (2017) Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence. Nat Commun 8:15985CrossRefGoogle Scholar
  4. Chen W, Yu H, Lee S-Y, Wei T, Li J, Fan Z (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872CrossRefGoogle Scholar
  5. Cristina C, Ana B, Angeles B, Carlos N (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23:57–91CrossRefGoogle Scholar
  6. Fang ZQ, Zhu HL, Bao WZ, Preston C, Liu Z, Dai JQ, Li YY, Hu LB (2014a) Highly transparent paper with tunable haze for green electronics. Energy Environ Sci 7:3313–3319CrossRefGoogle Scholar
  7. Fang ZQ, Zhu HL, Yuan YB, Ha D, Zhu SZ, Preston C, Chen QX, Li YY, Han XG, Lee S, Chen G, Li T, Munday J, Huang JS, Hu LB (2014b) Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett 14:765–773CrossRefGoogle Scholar
  8. Fu J, Zhang J, Song XP, Zarrin H, Tian XF, Qiao JL, Rasen L, Li KC, Chen ZW (2016) A flexible solid-state electrolyte for wide-scale integration of rechargeable zinc-air batteries. Energy Environ 9:663–670CrossRefGoogle Scholar
  9. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542CrossRefGoogle Scholar
  10. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  11. Hsieh MC, Koga H, Suganuma K, Nogi M (2017) Hazy transparent cellulose nanopaper. Sci Rep 7:41590CrossRefGoogle Scholar
  12. Juzeniene A, Brekke P, Dahlback A, Andersson-Engels S, Reichrath J, Moan K, Holick MF, Grant WB, Moan J (2011) Solar radiation and human health. Rep Prog Phys 74:56CrossRefGoogle Scholar
  13. Lai JC, Li L, Wang DP, Zhang MH, Mo SR, Wang X, Zeng KY, Li CH, Jiang Q, You XZ, Zuo JL (2018) A rigid and healable polymer cross-linked by weak but abundant Zn(II)-carboxylate interactions. Nat Commun 9:2725CrossRefGoogle Scholar
  14. Leijonmarck S, Cornell A, Lindbergh G, Wagberg L (2013) Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J Mater Chem A 1:4671–4677CrossRefGoogle Scholar
  15. Liao W, Zhang J, Yin S, Lin H, Zhang X, Wang J, Wang H, Wu K, Wang Z, Fan Y, Pan M, Su C (2018) Tailoring exciton and excimer emission in an exfoliated ultrathin 2D metal-organic framework. Nat Commun 9:2401CrossRefGoogle Scholar
  16. Mahpeykar SM, Zhao YB, Li XY, Yang ZY, Xu QW, Lu ZH, Sargent EH, Wang XH (2017) Cellulose nanocrystal: polymer hybrid optical diffusers for index-matching-free light management in optoelectronic devices. Adv Opt Mater 5:1700430CrossRefGoogle Scholar
  17. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  18. Pan M, Zhu Y, Wu K, Chen L, Hou Y, Yin S, Wang H, Fan Y, Su C (2017) Epitaxial growth of hetero-Ln-MOF hierarchical single crystals for domain- and orientation-controlled multicolor luminescence 3D coding capability. Angew Chem Int Ed 56:14582–14586CrossRefGoogle Scholar
  19. Pan M, Liao W, Yin S, Sun S, Su C (2018) Single-phase white-light-emitting and photoluminescent color tuning coordination assemblies. Chem Rev 118:8889–8935CrossRefGoogle Scholar
  20. Puntel E, Deseri L, Fried E (2011) Wrinkling of a stretched thin sheet. J Elast 105:137–170CrossRefGoogle Scholar
  21. Seon JY, Gwan HC, Pil JY (2017) Multiscale-architectured functional membranes utilizing inverse opal structures. J Mater Chem A 5:17111–17134CrossRefGoogle Scholar
  22. Tanaka Y, Kubota A, Yamato M, Okano T, Nishida K (2011) Irreversible optical clearing of sclera by dehydration and cross-linking. Biomaterials 32:1080–1090CrossRefGoogle Scholar
  23. Tang H, Butchosa N, Zhou Q (2015) A transparent, hazy, and strong macroscopic ribbon of oriented cellulose nanofibrils bearing poly(ethylene glycol). Adv Mater 27:2070–2076CrossRefGoogle Scholar
  24. Zhang TB, Zhang YL, Li JS, Kou HC, Hu R, Xue XY (2016) Microstructure and hydrogenation properties of a melt-spun non-stoichiometric Zr-based Laves phase alloy. Mater Charact 111:53–59CrossRefGoogle Scholar
  25. Zhang Z, Chang H, Xue BL, Han Q, Lu XQ, Zhang SF, Li XP, Zhu XJ, Wong WK, Li KC (2017a) New transparent flexible nanopaper as ultraviolet filter based on red emissive Eu(III) nanofibrillated cellulose. Opt Mater 73:747–753CrossRefGoogle Scholar
  26. Zhang Z, Chang H, Xue BL, Zhang SF, Li XP, Wong WK, Li KC, Zhu XJ (2017b) Near-infrared and visible dual emissive transparent nanopaper based on Yb(III)–carbon quantum dots grafted oxidized nanofibrillated cellulose for anti-counterfeiting applications. Cellulose 25:377–389CrossRefGoogle Scholar
  27. Zhang Z, Zhang M, Li XP, Li KC, Lü XQ, Wang YY, Zhu XJ (2018) Irreversible solvatochromic Zn-nanopaper based on Zn(II) terpyridine assembly and oxidized nanofibrillated cellulose. ACS Sustain Chem Eng 6:11614–11623CrossRefGoogle Scholar
  28. Zhu HL, Parvinian S, Preston C, Vaaland O, Ruan ZC, Hu LB (2013) Transparent nanopaper with tailored optical properties. Nanoscale 5:3787–3792CrossRefGoogle Scholar
  29. Zhu HL, Luo W, Ciesielski PN, Fang ZQ, Zhu JY, Henriksson G, Himmel ME, Hu LB (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Zhao Zhang
    • 1
    • 2
    • 3
    Email author
  • Fafa Song
    • 1
  • Meng Zhang
    • 1
  • Hui Chang
    • 3
  • Xiya Zhang
    • 1
  • Xinping Li
    • 1
    Email author
  • Xunjin Zhu
    • 4
  • Xingqiang Lü
    • 3
  • Yaoyu Wang
    • 3
  • Kecheng Li
    • 5
  1. 1.College of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi’anChina
  2. 2.State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouChina
  3. 3.Northwest UniversityXi’anChina
  4. 4.Department of ChemistryHong Kong Baptist UniversityKowloon TongChina
  5. 5.Chemical and Paper EngineeringWestern Michigan UniversityKalamazooUSA

Personalised recommendations