Advertisement

Cellulose

pp 1–14 | Cite as

Contribution of lignin to the microstructure and physical performance of three-dimensional lignocellulose hydrogels

  • Lili Zhang
  • Hailong Lu
  • Juan Yu
  • Yimin FanEmail author
  • Jinxia Ma
  • Zhiguo WangEmail author
Original Research
  • 68 Downloads

Abstract

Lignocellulose hydrogels (LCGs) with varying lignin content were prepared by the dissolution–regeneration process using N-methylmorpholine-N-oxide solvent system. The varying lignin content in LCGs can lead to different aggregation states due to the hydrophobic association of lignin, with an important impact on the micromorphology and pore structure of hydrogel. The presence of lignin is beneficial for the mechanical improvement of LCGs when lignin content is lower than 6.5%. LCGs with 6.5% lignin exhibits better viscoelasticity (580.0 kPa), compressive modulus (55.0 kPa), and a more homogeneous structure than others. The LCGs with a lignin content of 11.6% exhibit the best adsorption property (86.1 mg g−1 for Pb2+ and 69.3 mg g−1 for Cu2+), which is dominated by chemisorption and multiple diffusion mechanisms. The work provides a feasible route for lignin-containing hydrogel production and develops a method for tailoring micromorphology and the physical properties of the hydrogel by controlling lignin content.

Graphical abstract

Keywords

Lignocellulose hydrogel Lignin Physical performance Heavy metal ion removal 

Notes

Acknowledgments

We are grateful for financial support from the National Natural Science Foundation of China (Grant No. 31870565), as well as project funding from the Natural Science Foundation of Jiangsu Province (BK20181397), the Doctorate Fellowship Foundation of Nanjing Forestry University, the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX17_0845) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

  1. Bian H, Chen L, Gleisner R et al (2017) Producing wood-based nanomaterials by rapid fractionation of wood at 80 °C using a recyclable acid hydrotrope. Green Chem 19:3370–3379.  https://doi.org/10.1039/C7GC00669A CrossRefGoogle Scholar
  2. Bian H, Gao Y, Wang R et al (2018a) Contribution of lignin to the surface structure and physical performance of cellulose nanofibrils film. Cellulose 25:1309–1318.  https://doi.org/10.1007/s10570-018-1658-x CrossRefGoogle Scholar
  3. Bian H, Wei L, Lin C et al (2018b) Lignin-containing cellulose nanofibril-reinforced polyvinyl alcohol hydrogels. ACS Sustain Chem Eng 6:4821–4828.  https://doi.org/10.1021/acssuschemeng.7b04172 CrossRefGoogle Scholar
  4. Bismarck A, Aranberri-Askargorta I, Springer J et al (2002) Surface characterization of flax, hemp and cellulose fibers; Surface properties and the water uptake behavior. Polym Compos 23:872–894.  https://doi.org/10.1002/pc.10485 CrossRefGoogle Scholar
  5. Chang S-S, Clair B, Ruelle J et al (2009) Mesoporosity as a new parameter for understanding tension stress generation in trees. J Exp Bot 60:3023–3030.  https://doi.org/10.1093/jxb/erp133 CrossRefGoogle Scholar
  6. Dence CW (1992) The determination of lignin. Methods in lignin chemistry. Springer, Berlin, pp 33–61CrossRefGoogle Scholar
  7. Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33:259–276.  https://doi.org/10.1016/j.indcrop.2010.10.022 CrossRefGoogle Scholar
  8. Dong Y, Paukkonen H, Fang W et al (2018) Entangled and colloidally stable microcrystalline cellulose matrices in controlled drug release. Int J Pharm 548:113–119.  https://doi.org/10.1016/j.ijpharm.2018.06.022 CrossRefGoogle Scholar
  9. Garg U, Kaur MP, Jawa GK et al (2008) Removal of cadmium(II) from aqueous solutions by adsorption on agricultural waste biomass. J Hazard Mater 154:1149–1157.  https://doi.org/10.1016/j.jhazmat.2007.11.040 CrossRefGoogle Scholar
  10. Ge Y, Xiao D, Li Z, Cui X (2014) Dithiocarbamate functionalized lignin for efficient removal of metallic ions and the usage of the metal-loaded bio-sorbents as potential free radical scavengers. J Mater Chem A 2:2136–2145.  https://doi.org/10.1039/C3TA14333C CrossRefGoogle Scholar
  11. Guo X, Zhang S, Shan X (2008) Adsorption of metal ions on lignin. J Hazard Mater 151:134–142.  https://doi.org/10.1016/j.jhazmat.2007.05.065 CrossRefGoogle Scholar
  12. Jiang F, Hsieh Y-L (2014) Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing–thawing. J Mater Chem A 2:350–359.  https://doi.org/10.1039/C3TA13629A CrossRefGoogle Scholar
  13. Jouanin L, Lapierre C (2012) Lignins: biosynthesis, biodegradation and bioengineering. Academic Press, LondonGoogle Scholar
  14. Kim Y, Kim YK, Kim S et al (2017) Nanostructured potassium copper hexacyanoferrate-cellulose hydrogel for selective and rapid cesium adsorption. Chem Eng J 313:1042–1050.  https://doi.org/10.1016/j.cej.2016.10.136 CrossRefGoogle Scholar
  15. Kontturi E, Laaksonen P, Linder MB et al (2018) Advanced materials through assembly of nanocelluloses. Adv Mater 1:1703779.  https://doi.org/10.1002/adma.201703779 CrossRefGoogle Scholar
  16. Li K, Reeve DW (2005) Fluorescent labeling of lignin in the wood pulp fiber wall. J Wood Chem Technol 24:169–181.  https://doi.org/10.1081/WCT-200026572 CrossRefGoogle Scholar
  17. Li J, Lu Y, Yang D et al (2011) Lignocellulose aerogel from wood-ionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions. Biomacromolecules 12:1860–1867.  https://doi.org/10.1021/bm200205z CrossRefGoogle Scholar
  18. Li Z, Xiao D, Ge Y, Koehler S (2015) Surface-functionalized porous lignin for fast and efficient lead removal from aqueous solution. ACS Appl Mater Interfaces 7:15000–15009.  https://doi.org/10.1021/acsami.5b03994 CrossRefGoogle Scholar
  19. Liu L, Wang R, Yu J et al (2016) Robust self-standing chitin nanofiber/nanowhisker hydrogels with designed surface charges and ultralow mass content via gas phase coagulation. Biomacromolecules 17:3773–3781.  https://doi.org/10.1021/acs.biomac.6b01278 CrossRefGoogle Scholar
  20. Lu Y, Sun Q, Yang D et al (2012) Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing–thawing in ionic liquid solution. J Mater Chem 22:13548.  https://doi.org/10.1039/c2jm31310c CrossRefGoogle Scholar
  21. Lu H, Zhang L, Liu C et al (2018) A novel method to prepare lignocellulose nanofibrils directly from bamboo chips. Cellulose 1:11.  https://doi.org/10.1007/s10570-018-2067-x Google Scholar
  22. Ma Z, Liu C, Niu N et al (2018) Seeking brightness from nature: j-aggregation-induced emission in cellulolytic enzyme lignin nanoparticles. ACS Sustain Chem Eng 6:3169–3175.  https://doi.org/10.1021/acssuschemeng.7b03265 CrossRefGoogle Scholar
  23. Mohamed MA, Abd Mutalib M, Mohd Hir ZA et al (2017) An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications. Int J Biol Macromol 103:1232–1256.  https://doi.org/10.1016/j.ijbiomac.2017.05.181 CrossRefGoogle Scholar
  24. Mushi NE, Kochumalayil J, Cervin NT et al (2016) Nanostructurally controlled hydrogel based on small-diameter native chitin nanofibers: preparation, structure, and properties. Chemsuschem 9:989–995.  https://doi.org/10.1002/cssc.201501697 CrossRefGoogle Scholar
  25. Mussana H, Yang X, Tessima M et al (2018) Preparation of lignocellulose aerogels from cotton stalks in the ionic liquid-based co-solvent system. Ind Crops Prod 113:225–233.  https://doi.org/10.1016/j.indcrop.2018.01.025 CrossRefGoogle Scholar
  26. Nair SS, Kuo P-Y, Chen H, Yan N (2017) Investigating the effect of lignin on the mechanical, thermal, and barrier properties of cellulose nanofibril reinforced epoxy composite. Ind Crops Prod 100:208–217.  https://doi.org/10.1016/j.indcrop.2017.02.032 CrossRefGoogle Scholar
  27. Shi Z, Liu Y, Xu H et al (2018) Facile dissolution of wood pulp in aqueous NaOH/urea solution by ball milling pretreatment. Ind Crops Prod 118:48–52.  https://doi.org/10.1016/j.indcrop.2018.03.035 CrossRefGoogle Scholar
  28. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847.  https://doi.org/10.1016/j.ijbiomac.2014.09.044 CrossRefGoogle Scholar
  29. Thakur S, Govender PP, Mamo MA et al (2017) Progress in lignin hydrogels and nanocomposites for water purification: future perspectives. Vacuum 146:342–355.  https://doi.org/10.1016/j.vacuum.2017.08.011 CrossRefGoogle Scholar
  30. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp USA 37:1Google Scholar
  31. Upton BM, Kasko AM (2016) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116:2275–2306.  https://doi.org/10.1021/acs.chemrev.5b00345 CrossRefGoogle Scholar
  32. Wang Z, Yokoyama T, Matsumoto Y (2010) Dissolution of ethylenediamine pretreated pulp with high lignin content in LiCl/DMSO without milling. J Wood Chem Technol 30:219–229.  https://doi.org/10.1080/02773810903477613 CrossRefGoogle Scholar
  33. Wang Z, Liu S, Matsumoto Y, Kuga S (2012) Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 19:393–399.  https://doi.org/10.1007/s10570-012-9651-2 CrossRefGoogle Scholar
  34. Wang R, Liu L, Yu J et al (2017) Versatile protonic acid mediated preparation of partially deacetylated chitin nanofibers/nanowhiskers and their assembling of nano-structured hydro- and aero-gels. Cellulose 24:5443–5454.  https://doi.org/10.1007/s10570-017-1511-7 CrossRefGoogle Scholar
  35. Xu Y, Li K, Zhang M (2007) Lignin precipitation on the pulp fibers in the ethanol-based organosolv pulping. Colloids Surf Physicochem Eng Asp 301:255–263.  https://doi.org/10.1016/j.colsurfa.2006.12.078 CrossRefGoogle Scholar
  36. Xu X, Zhou J, Nagaraju DH et al (2015) Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: catalyst-free synthesis and its application in energy storage devices. Adv Funct Mater 25:3193–3202.  https://doi.org/10.1002/adfm.201500538 CrossRefGoogle Scholar
  37. Yang J, Han C (2016) Mechanically viscoelastic properties of cellulose nanocrystals skeleton reinforced hierarchical composite hydrogels. ACS Appl Mater Interfaces 8:25621–25630.  https://doi.org/10.1021/acsami.6b08834 CrossRefGoogle Scholar
  38. Yang X, Shi K, Zhitomirsky I, Cranston ED (2015) Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv Mater 27:6104–6109.  https://doi.org/10.1002/adma.201502284 CrossRefGoogle Scholar
  39. Zhang L, Lu H, Yu J et al (2017) Dissolution of lignocelluloses with a high lignin content in a N-methylmorpholine-N-oxide monohydrate solvent system via simple glycerol-swelling and mechanical pretreatments. J Agric Food Chem 65:9587–9594.  https://doi.org/10.1021/acs.jafc.7b03429 CrossRefGoogle Scholar
  40. Zhang L, Lu H, Yu J et al (2018) Synthesis of lignocellulose-based composite hydrogel as a novel biosorbent for Cu2+ removal. Cellulose.  https://doi.org/10.1007/s10570-018-2077-8 Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, College of Chemical EngineeringNanjing Forestry UniversityNanjingChina

Personalised recommendations