, Volume 26, Issue 4, pp 2333–2348 | Cite as

Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanocrystal films: artificial weathering, humidity absorption, water vapor transmission rate, antimicrobial activity and biocompatibility

  • Sara Malmir
  • Luis Barral
  • Rebeca BouzaEmail author
  • Marta Esperanza
  • Marta Seoane
  • Sandra Feijoo-Bandín
  • Francisca Lago
Original Research


Bionanocomposite films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with different cellulose nanocrystal (CNC) loadings were prepared. Effects of artificial weathering, humidity absorption, water vapor transmission rate (WVTR), antimicrobial activity and biocompatibility were studied. Differential scanning calorimetry (DSC) and time resolved synchrotron X-ray diffraction were used to provide information about the effect of CNC on the crystalline structure of PHBV in the bionanocomposites. The incorporation of CNC accelerated the crystallization rate of PHBV due to a nucleating effect. DSC results showed first a decrease of crystallization and then the occurrence of secondary crystallization after artificial weathering. Scanning electron microscopy images implied well CNC distribution before artificial weathering and formation of blister—like points due to artificial weathering. Hydrophobicity of bionanocomposites was found to be slightly lower than for the PHBV in the humidity absorption tests. Bionanocomposites exhibited smaller WVTR due to restricted PHBV chain mobility. Samples with zinc oxide and silver showed antimicrobial inhibition activities against S. enterica, L. monocytogenes, S. aureus and E. coli. Results of cell viability and nitrite accumulation tests showed that PHBV and its bionanocomposites were biocompatible.

Graphical abstract


PHBV CNC Artificial weathering Biocompatibility Time resolved synchrotron X-ray diffraction Thermal analysis Antimicrobial activity 



This work was supported by the Ministerio de Economía y Competitividad [MAT2013-41892-R, Project NanoCompBioPol] and the Xunta de Galicia Government/FEDER: Program of Consolidation and Structuring Competitive Research Units [GRC 2014/036]. The synchrotron experiments were performed at beam line BL11—NCD at ALBA synchrotron Light Facility with the collaboration of ALBA staff. R. Bouza acknowledges the grant of ALBA synchrotron installation.


  1. Abdalkarim SYH, Yu HY, Song ML, Zhou Y, Yao J, Ni QQ (2017) In vitro degradation and possible hydrolytic mechanism of PHBV nanocomposites by incorporating cellulose nanocrystal-ZnO nanohybrids. Carbohydr Polym 176:38–49. CrossRefGoogle Scholar
  2. Berthet MA, Angellier-Coussy H, Chea V, Guillard V, Gastaldi E, Gontard N (2015) Sustainable food packaging: valorising wheat straw fibres for tuning PHBV based composites properties. Compos Part A 72:139–147. CrossRefGoogle Scholar
  3. Billingham NC, Prentice P, Walker TJ (1976) Some effects of morphology on oxidation and stabilization of polyolefins. J Polym Sci Symp 57:287–297. CrossRefGoogle Scholar
  4. Blinov NN, Popov AA, Rakovski SK, Stoyanov AK, Shopov DM, Zaikov GY (1989) Changes in the melting temperature, polydispersity and crystallinity of the components in a blend of high density polyethylene with polypropylene at deep ozone oxidation. Polym Sci USSR 31:2434–2439. CrossRefGoogle Scholar
  5. Chea V, Angellier-Coussy H, Peyron S, Kemmer D, Gontard N (2016) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging: physical-chemical and structural stability under food contact conditions. J Appl Polym Sci 133:41850–41858. CrossRefGoogle Scholar
  6. Craig IH, White JR, Chai Kin P (2005) Crystallization and chemi-crystallization of recycled photo-degraded polypropylene. Polymer 46:505–512. CrossRefGoogle Scholar
  7. Davies CA, Rocks SA, O’Shaughnessy MC, Perrett D, Winyard PG (2003) Analysis of nitrite and nitrate in the study of inflammation. In: Winyard PG, Willoughby DA (eds) Inflammation protocols. Humana Press, New Jersey, pp 305–320CrossRefGoogle Scholar
  8. Diez-Pascual AM, Diez-Vicente AL (2014) ZnO-reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. Appl Mater Interfaces 6:9822–9834. CrossRefGoogle Scholar
  9. Goy RC, Britto D, Assis OBG (2009) A review of the antimicrobial activity of chitosan. Polímeros 19:241–247. CrossRefGoogle Scholar
  10. Harvey W, Wilson M, Meghji S (1986) In vitro inhibition of lipopolysaccharide-induced bone resorption by polymyxin B. Br J Exp Pathol 67:699–705Google Scholar
  11. Hema R, Ng PN, Amirul AA (2013) Green nanobiocomposites: reinforcement effect of montmorillonite clays on physical and biological advancement of various polyhydroxyalcanoates. Polym Bull 70:755–771. CrossRefGoogle Scholar
  12. Jiang L, Moreluis E, Zhang J, Wolcott M, Holbery J (2008) Study of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites prepared by solution casting and melt processing. J Comp Mater 42:2629–2645. CrossRefGoogle Scholar
  13. Kimakhe S, Heymann D, Guicheux J, Pilet P, Giumelli B, Daculsi G (1998) Polymyxin B inhibits biphasic calcium phosphate degradation induced by lipopolysaccharide-activated human monocytes/macrophages. J Biomed Mater Res Part A 40:336–340CrossRefGoogle Scholar
  14. Kulshrestha AK (1992) Chemical degradation. In: Hamid SH, Amin MB, Maadhah AG (eds) Handbook of polymer degradation. Marcel Dekker, New YorkGoogle Scholar
  15. Leong YW, Abu Bakar MB, Mohd Ishak ZA, Ariffin A (2004) Characterization of talc/calcium carbonate filled polypropylene hybrid composites weathered in a natural environment. Polym Degrad Stab 83:411–422. CrossRefGoogle Scholar
  16. Lin N, Jin H, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83:1834–1842. CrossRefGoogle Scholar
  17. Malmir S, Montero B, Rico M, Barral L, Bouza R (2017a) Morphology, thermal and barrier properties of biodegradable films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing cellulose nanocrystals. Compos Part A 93:41–48. CrossRefGoogle Scholar
  18. Malmir S, Montero B, Rico M, Barral L, Bouza R, Farrag Y (2017b) PHBV/CNC bionanocomposites processed by extrusion: structural characterization and properties. Polym Compos 10:45. Google Scholar
  19. Maren R (2015) Toxicity of cellulose nanocrystals: a review. Indust Biotechnol 11:25–33. CrossRefGoogle Scholar
  20. Martino L, Berthet MA, Angellier-Coussy H, Gontard N (2015) Understanding external plasticization of melt-extruded PHBV-wheat straw fibers biodegradable composites for food packaging. J Appl Polym Sci 132:41611–41622. CrossRefGoogle Scholar
  21. Pawar PA, Purwar AH (2013) Biodegradable polymers in food packaging. AJER. 2:51–164Google Scholar
  22. Peñaloza JP, Márquez-Miranda V, Cabaña-Brunod M, Reyes-Ramírez R, Llancalahuen FM, Vilos C, Maldonado-Biermann F, Velásquez LA, Fuentes JA, González-Nilo FD, Rodríguez-Díaz M, Otero C (2017) Intracellular trafficking and cellular uptake mechanism of PHBV nanoparticles for targeted delivery in epithelial cell lines. J Nanobiotechnol 15:1–15. CrossRefGoogle Scholar
  23. Rabello MS, White JR (1997) Crystallization and melting behaviour of photodegraded polypropylene-I. Chemi-crystallization. Polymer 38:6379–6387. CrossRefGoogle Scholar
  24. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L (2004) Cell Viability Assays. Assay Guid Man 740:33–43Google Scholar
  25. Sadi RK, Fechine GJM, Demarquette NR (2010) Photodegradation of poly(3-hydroxybutyrate). Polym Degrad Stab 95(12):318–2327. CrossRefGoogle Scholar
  26. Sanchez-Garcia MD, Lagaron JM (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987–1004. CrossRefGoogle Scholar
  27. Sato H, Suttiwijitpukdee N, Hashimoto T, Ozaki Y (2012) Simultaneous synchrotron SAXS/WAXD study of composition fluctuations, cold-crystallization, and melting in biodegradable polymer blends of cellulose acetate butyrate and poly(3-hydroxybutyrate). Macromol 45:2783–2795CrossRefGoogle Scholar
  28. Scandola M, Focarete ML, Adamus G, Sikroska W, Baranowska I, Swierczek S, Gnatowski M, Kowalczuk M, Jedlinski Z (1997) Polymer blends of natural poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and a synthetic atactic poly(3-hydroxybutyrate). Characterization and biodegradation studies. Macromol 30:2568–2574CrossRefGoogle Scholar
  29. Scheirs J, Bigger SW, Delatycki O (1991) Characterizing the solid-state thermal oxidation of poly(ethylene oxide) powder. Polymer 32:2014–2019. CrossRefGoogle Scholar
  30. Sezer UA, Sanko V, Yuksekdag ZN, Uzundag D, Sezer S (2016) Use of oxidized regenerated cellulose as bacterial filler for food packaging applications. Cellulose 23:3209–3219. CrossRefGoogle Scholar
  31. Sridhar V, Le IE, Chun HH, Park H (2013) Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. Polym Lett 7:320–328. CrossRefGoogle Scholar
  32. Srithep Y, Ellingham T, Peng J, Sabo R, Clemons C, Turng LS, Pilla S (2013) Melt compounding of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polym Degrad Stab 98:1439–1449. CrossRefGoogle Scholar
  33. Sung SY, Tin Sin L, Tee TT, Bee ST, Rahmat AR, Rahman WA, Tan AC, Vikhraman M (2013) Antimicrobial agents for food packaging applications. Trends Food Sci Technol 33:110–123. CrossRefGoogle Scholar
  34. Ten E, Jiang L, Wolcott M (2012) Crystallization kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Carbohydr Polym 90:541–550. CrossRefGoogle Scholar
  35. Terselius B, Gedde UW, Jansson JF (1982) Structure and morphology of thermally oxidized high density polyethylene pipes. Polym Eng Sci 22:422–431. CrossRefGoogle Scholar
  36. Wang B, Li J, Zhang J, Li H, Chen P, Gu Q, Wang Z (2013) Thermo-mechanical properties of the composite made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and acetylated chitin nanocrystals. Carbohydr Polym 95:100–106. CrossRefGoogle Scholar
  37. Wei L, McDonald AG (2016) Accelerated weathering studies on the bioplastic, poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polym Degrad Stab 126:93–100. CrossRefGoogle Scholar
  38. Yu HY, Qin ZY, Zhou Z (2011) Cellulose nanocrystals as green fillers to improve crystallization and hydrophilic property of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Prog Nat Sci Mater Int 21:478–484. CrossRefGoogle Scholar
  39. Yu HY, Qin ZY, Liu YN, Chen L, Liu N, Zhou Z (2012) Simultaneous improvement of mechanical properties and thermal stability of bacterial polyester by cellulose nanocrystals. Carbohydr Polym 89:971–978. CrossRefGoogle Scholar
  40. Yu HY, Qin ZY, Liu L, Yang XG, Zhou Y, Yao JM (2013) Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Compos Sci Technol 87:22–28. CrossRefGoogle Scholar
  41. Yu HY, Qin ZY, Sun B, Yang XG, Yao JM (2014) Reinforcement of transparent poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by incorporation of functionalized carbon nanotubes as a novel bionanocomposite for food packaging. Comp Sci Technol 94:96–104. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria PolitécnicaUniversidade da CoruñaFerrolSpain
  2. 2.Grupo MICROALGAE, Departamento de Biología, Facultad de CienciasUniversidade da CoruñaA CoruñaSpain
  3. 3.Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS)University Clinical HospitalSantiago de CompostelaSpain
  4. 4.Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV)MadridSpain

Personalised recommendations