, Volume 26, Issue 4, pp 2389–2401 | Cite as

Bio-inspired films based on chitosan, nanoclays and cellulose nanocrystals: structuring and properties improvement by using water-evaporation-induced self-assembly

  • Daniela EnescuEmail author
  • Christian Gardrat
  • Henri Cramail
  • Cédric Le Coz
  • Gilles SèbeEmail author
  • Véronique ComaEmail author
Original Research


Herein, we report a novel approach for the preparation of chitosan films with improved mechanical and barrier properties, by incorporating a mixture of nanoclays (MMT) and cellulose nanocrystals (CNC), via a water-evaporation-induced self-assembly process. The improvements obtained were assigned to: (1) the slow evaporation of water, leading to nacre-like structures; (2) a synergistic effect created between MMT and CNC. The best mechanical properties were obtained with a weight ratio MMT/CNC 1:2, which led to a significant improvement in tensile strength (+ 230%) and tensile modulus (+ 448%). In addition, the thermal stability of the films was also improved, while the water vapor and oxygen transmission rates were reduced. The improved barrier properties were attributed to the nacre-like layered structure formed by the sodium cloisite platelets within the chitosan matrix, which slowed down the diffusion of water and oxygen.

Graphical abstract


Chitosan Cellulose nanocrystals Nanoclays Biocomposites Bioinspired materials 



The authors express their gratitude towards PLACAMAT (France) for SEM analysis, towards Vincent Baylac (Université Paul Sabatier, Toulouse, France) for OTR measurements and towards Eric Lebraud (ICMCB, University of Bordeaux, France) for XRD analysis.


  1. Abdou E, Elsabee M, Elkholy S (2011) The amazing materials chitin and chitosan. Extraction, modification and blending with starch. LAP Lambert Academic, Saarbrücken. ISBN 978-3-8443-8807-7Google Scholar
  2. Aulin C, Gallstedt M, Lindstrom T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574CrossRefGoogle Scholar
  3. Begin A, Van Calsteren MR (1999) Antimicrobial films produced from chitosan. Int J Biol Macromol 26:63–67CrossRefGoogle Scholar
  4. Bonderer LJ, Studart AR, Gauckler LJ (2008) Bioinspired design and assembly of platelet reinforced polymer films. Science 319:1069–1073CrossRefGoogle Scholar
  5. Brand J, Pecastaings G, Sèbe G (2017) A versatile method for the surface tailoring of cellulose nanocrystal building blocks by acylation with functional vinyl esters. Carbohydr Polym 169:189–197CrossRefGoogle Scholar
  6. Campaniello D, Bevilacqua A, Sinigaglia M, Corbo MR (2008) Chitosan: antimicrobial activity and potential applications for preserving minimally processed strawberries. Food Microbiol 25:992–1000CrossRefGoogle Scholar
  7. Cheng Q, Wu M, Li M, Jiang L, Tang Z (2013) Ultratough artificial nacre based on conjugated cross-linked graphene oxide. Angew Chem Int Ed 52:3750–3755CrossRefGoogle Scholar
  8. Coma V, Verestiuc L (2012) Chitosan-based antimicrobial materials to biomedical applications. In: Popa M, Ottenbritte RM, Uglea CV (eds) Medical applications of polymers. American Scientific Publishers, Valencia, pp 64–108Google Scholar
  9. Cussler EL, Hughes SE, Ward WJ, Aris R (1998) Barrier membranes. J Membr Sci 38:161–174CrossRefGoogle Scholar
  10. Dai H, Huang Y, Huang H (2018) Enhanced performances of polyvinyl alcohol films by introducing tannic acid and pineapple peel-derived cellulose nanoscrystals. Cellulose 25:4623–4637CrossRefGoogle Scholar
  11. Darder M, Colilla M, Ruiz-Hitzky E (2003) Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite. Chem Mater 15:3774–3780CrossRefGoogle Scholar
  12. Denis JN, Greene AE, Guenard D, Gueritte-Voegelein F, Mangatal L, Potier P (1988) Highly efficient, practical approach to natural taxol. J Am Chem Soc 110:5917–5919CrossRefGoogle Scholar
  13. Divakaran R, Sivasankara Pillai VN (2001) Flocculation of kaolinite suspensions in water by chitosan. Water Res 35:3904–3908CrossRefGoogle Scholar
  14. Durango AM, Soares NFF, Andrade NJ (2006) Microbiological evaluation of an edible antimicrobial coating on minimally processed carrots. Food Control 17:336–341CrossRefGoogle Scholar
  15. Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315CrossRefGoogle Scholar
  16. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRefGoogle Scholar
  17. El Tahlawy K (2008) Chitosan phosphate: a new way for production of eco-friendly flame-retardant cotton textiles. J Text Inst 99:185–191CrossRefGoogle Scholar
  18. Enescu D, Hamciuc V, Ardeleanu R, Cristea M, Ioanid A, Harabagiu V, Simionescu BC (2009a) Polydimethylsiloxane-modified chitosan. part III: preparation and characterization of hybrid membranes. Carbohydr Polym 76:268–278CrossRefGoogle Scholar
  19. Enescu D, Hamciuc V, Pricop L, Hamaide T, Harabagiu V, Simionescu BC (2009b) Polydimethylsiloxane-modified chitosan. Part I: synthesis and structural characterization of graft and crosslinked copolymers. J Polym Res 16:73–80CrossRefGoogle Scholar
  20. Enescu D, Frache F, Geobaldo F (2015) Formation and oxygen diffusion barrier properties of fish gelatin/natural sodium montmorillonite clay self-assembled multilayers onto the biopolyester surface. R Soc Chem Adv 5:61465–61480Google Scholar
  21. Espino-Perez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49:3144–3154CrossRefGoogle Scholar
  22. Fukushima K, Fina A, Geobaldo F, Venturello A, Camino G (2012) Properties of poly(lactic acid) nanocomposites based on montmorillonite, sepiolite and zirconium phosphonate. eXPRESS Polym Lett 6:914–926CrossRefGoogle Scholar
  23. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782CrossRefGoogle Scholar
  24. Giannelis EP (1996) Polymer-layered silicate nanocomposites. Adv Mater (Weinheim Ger) 8:29–35CrossRefGoogle Scholar
  25. Günister E, Pestreli D, Ünlü CH, Atici O, Güngör N (2007) Synthesis and characterization of chitosan-MMT biocomposite systems. Carbohydr Polym 67:358–365CrossRefGoogle Scholar
  26. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  27. Han J, Dou Y, Yan D, Ma J, Wei M, Evans DG, Duan X (2011) Biomimetic design and assembly of organic–inorganic composite films with simultaneously enhanced strength and toughness. Chem Commun 47:5274–5276CrossRefGoogle Scholar
  28. Hay JN, Shaw SJ (2000) Nanocomposites—properties and applications. Abstracted from “a review of nanocomposites 2000”. Retrieved on February 13, 2005 from at
  29. Hong SI, Lee JH, Bae HJ, Koo SY, Lee HS, Choi JH, Kim DH, Park SH, Park HJ (2011) Effect of shear rate on structural, mechanical, and barrier properties of chitosan/montmorillonite nanocomposite film. J Appl Polym Sci 119:2742–2749CrossRefGoogle Scholar
  30. Hu C, Deng Y, Hu D, Duan Y, Zhai K (2016) Adsorption and intercalation of low and medium molar mass chitosans on/in sodium montmorillonite. Int J Biol Macromol 92:1191–1196CrossRefGoogle Scholar
  31. Jackson AP, Vincent JFV, Turner RM (1988) The mechanical design of nacre. Proc R Soc Lond Ser B 234:415–440CrossRefGoogle Scholar
  32. Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608CrossRefGoogle Scholar
  33. Kim JT, Lee DY, Oh TS, Lee DH (2003) Characteristics of nitrile–butadiene rubber layered silicate nanocomposites with silane coupling agent. J Appl Polym Sci 89:2633–2640CrossRefGoogle Scholar
  34. Leceta I, Molinaro S, Guerrero P, Kerry JP, de la Caba K (2015) Quality attributes of map packaged ready-to-eat baby carrots by using chitosan-based coatings. Postharvest Biol Technol 100:142–150CrossRefGoogle Scholar
  35. Li YT, Lin SB, Chen LC, Chen HH (2017) Antimicrobial activity and controlled release of nanosilvers in bacterial cellulose composites films incorporated with montmorillonites. Cellulose 24:4871–4883CrossRefGoogle Scholar
  36. Lin TH, Huang WH, Jun IK, Jiang P (2009) Bioinspired assembly of colloidal nanoplatelets by electric field. Chem Mater 21:2039–2044CrossRefGoogle Scholar
  37. Marelli B, Brenckle MA, Kaplan DL, Omenetto FG (2016) Silk fibroin as edible coating for perishable food preservation. Sci Rep 6:25263CrossRefGoogle Scholar
  38. Moussout H, Ahlafi H, Aazza M, Sekkate C (2018) Kinetic and mechanism studies of the isothermal degradation of local chitin, chitosan and its biocomposite bentonite/chitosan. Cellulose 25:5593–5609CrossRefGoogle Scholar
  39. NF ISO 2528 (2001) Produits en feuilles - détermination du coefficient de transmission de la vapeur d’eau - Méthode (de la capsule) par gravimétrieGoogle Scholar
  40. Oguzlu H, Tihminlioglu F (2010) Preparation and barrier properties of chitosan layered silicate nanocomposite films. Macromol Symp 298:91–98CrossRefGoogle Scholar
  41. Ou CY, Li SD, Yang L, Li CP, Hong PZ, She XD (2010) The impact of cupric ion on thermo-oxidative degradation of chitosan. Polym Int 59:1110–1115Google Scholar
  42. Portes E, Gardrat C, Castellan A, Coma V (2009) Environmentally friendly films based on chitosan and tetrahydrocurcurcuminoid derivatives exhibiting antibacterial and antioxidative properties. Carbohydr Polym 76:578–584CrossRefGoogle Scholar
  43. Priolo MA, Gamboa D, Grunlan JC (2010) Transparent clay-polymer nano brick wall assemblies with tailorable oxygen barrier. ACS Appl Mater Interfaces 2:312–320CrossRefGoogle Scholar
  44. Priolo MA, Holder KM, Greenlee SM, Grunlan JC (2012) Transparency, gas barrier, and moisture resistance of large-aspect-ratio vermiculite nanobrick wall thin films. ACS Appl Mater Interfaces 4:5529–5533CrossRefGoogle Scholar
  45. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  46. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRefGoogle Scholar
  47. Roman M, Winter WT (2004) Effects of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677CrossRefGoogle Scholar
  48. Roussy J, Van Vooren M, Dempsey BA, Guibal E (2005) Influence of chitosan characteristics on the coagulation and the floculation of bentonite suspensions. Water Res 39:3247–3258CrossRefGoogle Scholar
  49. Salahuddin N, Moet A, Hiltner A, Baer E (2002) Nanoscale highly filled epoxy nanocomposite. Eur Polym J 38:1477–1482CrossRefGoogle Scholar
  50. Sanchez-Garcia MD, Lopez-Robio A, Lagaron JM (2010) Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci Technol 21:528–536CrossRefGoogle Scholar
  51. Shafizadef F (1982) Introduction to pyrolysis of biomass. J Anal Appl Pyrolysis 3:283–305CrossRefGoogle Scholar
  52. Silva SML, Braga CRC, Fook MVL, Raposo CMO, Carvalho LH, Canedo EL (2012) Application of infrared spectroscopy to analysis of chitosan/clay nanocomposites. In: Theophile T (ed) Infrared spectroscopy—materials science, engineering and technology. InTech, Rijeka, pp 43–62Google Scholar
  53. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRefGoogle Scholar
  54. Tan W, Zhang Y, Szeto YS, Liao L (2008) A novel method to prepare chitosan/montmorillonite nanocomposites in the presence of hydroxy-aluminum oligomeric cations. Compos Sci Technol 68:2917–2921CrossRefGoogle Scholar
  55. Tortora M, Vittoria V, Galli G, Ritrovati S, Chiellini E (2002) Transport properties of modified montmorillonite-poly(ε-caprolactone) nanocomposites. Macromol Mater Eng 287:243–249CrossRefGoogle Scholar
  56. Wang SF, Shen L, Tong YJ, Chen L, Phang IY, Lim PQ, Liu TX (2005) Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stab 90:123–131CrossRefGoogle Scholar
  57. Wang J, Cheng Q, Lin L, Chen L, Jiang L (2013) Understanding the relationship of performance with nanofiller content in the biomimetic layered nanocomposites. Nanoscale 5:6356–6362CrossRefGoogle Scholar
  58. Wang J, Cheng Q, Lin L, Jiang L (2014) Synergistic toughening of bioinspired poly(vinyl alcohol) clay-nanofibrillar cellulose artificial nacre. ACS Nano 8:2739–2745CrossRefGoogle Scholar
  59. Wang Q, Guo J, Xu D, Cai J, Qiu Y, Ren J, Chang L (2015) Facile construction of cellulose/montmorillonite nanocomposite biobased plastics with flame retardant and gas barrier properties. Cellulose 22:3799–3810CrossRefGoogle Scholar
  60. Wang J, Gardner DJ, Stark NM, Bousfield DW, Tajvidi M, Cai Z (2018) Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustain Chem Eng 6:49–70CrossRefGoogle Scholar
  61. Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71:R107–R116CrossRefGoogle Scholar
  62. Wu CN, Saito T, Fujisawa S, Fukuzumi H, Isogai A (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 13:1927–1932CrossRefGoogle Scholar
  63. Xu Y, Ren X, Hanna MA (2006) Chitosan/clay nanocomposite film preparation and characterization. J Appl Polym Sci 99:1684–1691CrossRefGoogle Scholar
  64. Yadav M, Ahmad S (2015) Montmorillonite/grapheme oxide/chitosan composite: synthesis, characterization and properties. Int J Biol Macromol 79:923–933CrossRefGoogle Scholar
  65. Yao HB, Tan ZH, Fang HY, Yu SH (2010) Artificial nacre-like bionanocomposite films form the self-assembly of chitosan-montmorillonite hybrid building blocks. Angew Chem Int Ed 49:10127–10131CrossRefGoogle Scholar
  66. Yoshida CMP, Maciel VBV, Mendonca MED, Franco TT (2014) Chitosan biobased and intelligent films: monitoring pH variations. LWT Food Sci Technol 55:83–89CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.UMR 5629Université de BordeauxPessacFrance
  2. 2.UMR 5629CNRS, LCPOPessacFrance
  3. 3.Department Life Sciences, Research Unit: Nano for Food, Food ProcessingInternational Iberian Nanotechnology Laboratory (INL)BragaPortugal

Personalised recommendations