Advertisement

Cellulose

pp 1–12 | Cite as

TEMPO oxidation and high-speed blending as a combined approach to disassemble bacterial cellulose

  • Eligenes Sampaio do Nascimento
  • André Luís Sousa Pereira
  • Matheus de Oliveira Barros
  • Maria Karolina de Aaraújo Barroso
  • Helder Levi Silva Lima
  • Maria de Fatima Borges
  • Judith Pessoa de Andrade Feitosa
  • Henriette Monteiro Cordeiro de Azeredo
  • Morsyleide de Freitas RosaEmail author
Original Research
  • 44 Downloads

Abstract

The aim of this study was to obtain bacterial cellulose (BC) nanofibrils by using a high speed blender on BC previously oxidized with 2,2,6,6-tetramethyl-1-piperidinoxyl (TEMPO) radical. The resulting oxidized nanofibrillated bacterial cellulose (BCOXNF) was characterized chemically, thermally, and morphologically, presenting high crystallinity index (92%), great dispersion stability (zeta potential, − 52 mV) and appropriate morphology (40 nm in diameter). In addition, freeze dried nanofibrils were evaluated for their redispersibility in water, in order to check whether the process was effective in preventing hornification (nanofibril aggregation upon drying). In fact, the obtained material presented better redispersibility in water (zeta potential, − 63 mV) after freeze drying when compared to non-oxidized BC.

Graphical abstract

Keywords

Bacterial cellulose TEMPO Cellulose nanofibrils Oxidation 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of the Empresa Brasileira de Pesquisa Agropecuária (Embrapa, 02.14.03.012.00.00 and 03.14.04.007.00.00) and the Ceará Foundation for the Support of Scientific and Technological Development (FUNCAP, PR2-0101-00023.01.00/15), as well as the Ceará Federal Institute (IFCE) for the FTIR analyses, and Celli R. Muniz (Embrapa Agroindustria Tropical) for the SEM analyses. They also thank FUNCAP (PEP-0094-0001.01.37/14, BMD-008-00350.01.04/14), CAPES (2017SLR-17925), and the CNPq (145098/2016-8, 129977/2014-4) for the scholarships granted to authors Nascimento, Lima, Pereira, Barros, and Barroso respectively. Feitosa thanks INCT-INOMAT. Authors Azeredo and Rosa thank CNPq for their Research Productivity fellowships (302381/2016-3 and 305504/2016-9 respectively).

Supplementary material

10570_2018_2208_MOESM1_ESM.docx (100 kb)
Supplementary material 1 (DOCX 100 kb)

References

  1. Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023.  https://doi.org/10.1007/s10570-009-9334-9 CrossRefGoogle Scholar
  2. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664–1671.  https://doi.org/10.1016/j.biortech.2007.04.029 CrossRefPubMedGoogle Scholar
  3. Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 13:1486–1494.  https://doi.org/10.1021/bm300191k CrossRefPubMedGoogle Scholar
  4. Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46:609–620.  https://doi.org/10.1016/j.eurpolymj.2009.12.025 CrossRefGoogle Scholar
  5. Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983.  https://doi.org/10.1016/j.carbpol.2010.12.052 CrossRefGoogle Scholar
  6. Cacicedo ML, Castro MC, Servetas I et al (2016) Progress in bacterial cellulose matrices for biotechnological applications. Bioresour Technol.  https://doi.org/10.1016/j.biortech.2016.02.071 CrossRefPubMedGoogle Scholar
  7. Chen W, Yu H, Liu Y (2011) Preparation of millimeter-long cellulose nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86:453–461.  https://doi.org/10.1016/j.carbpol.2011.04.061 CrossRefGoogle Scholar
  8. Chen Y, Chen S, Wang B et al (2017) TEMPO-oxidized bacterial cellulose nanofibers-supported gold nanoparticles with superior catalytic properties. Carbohydr Polym 160:34–42.  https://doi.org/10.1016/j.carbpol.2016.12.020 CrossRefPubMedGoogle Scholar
  9. de Britto D, Assis OBG (2009) Thermal degradation of carboxymethylcellulose in different salty forms. Thermochim Acta 494:115–122.  https://doi.org/10.1016/j.tca.2009.04.028 CrossRefGoogle Scholar
  10. Dinand E, Chanzy H, Vignon RM (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food. Hydrocoll 13:275–283.  https://doi.org/10.1016/S0268-005X(98)00084-8 CrossRefGoogle Scholar
  11. Esa F, Tasirin SM, Rahman NA (2014) Overview of bacterial cellulose production and application. Agric Agric Sci Procedia 2:113–119.  https://doi.org/10.1016/j.aaspro.2014.11.017 CrossRefGoogle Scholar
  12. Eyholzer C, Bordeanu N, Lopez-Suevos F et al (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30.  https://doi.org/10.1007/s10570-009-9372-3 CrossRefGoogle Scholar
  13. Feng J, Shi Q, Li W et al (2014) Antimicrobial activity of silver nanoparticles in situ growth on TEMPO-mediated oxidized bacterial cellulose. Cellulose 21:4557–4567.  https://doi.org/10.1007/s10570-014-0449-2 CrossRefGoogle Scholar
  14. Fernandes Diniz JMB, Gil MH, Castro JAAM (2004) Hornification—its origin and interpretation in wood pulps. Wood Sci Technol 37:489–494.  https://doi.org/10.1007/s00226-003-0216-2 CrossRefGoogle Scholar
  15. Foresti ML, Vazquez A, Boury B (2017) Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances. Carbohydr Polym 157:447–467CrossRefGoogle Scholar
  16. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896.  https://doi.org/10.1007/s10570-013-0030-4 CrossRefGoogle Scholar
  17. Fujisawa S, Ikeuchi T, Takeuchi M et al (2012) Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromolecules 13:2188–2194.  https://doi.org/10.1021/bm300609c CrossRefPubMedGoogle Scholar
  18. Fukuzumi H, Saito T, Okita YA (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508.  https://doi.org/10.1016/j.polymdegradstab.2010.06.015 CrossRefGoogle Scholar
  19. Fuller ME, Andaya C, McClay K (2018) Evaluation of ATR-FTIR for analysis of bacterial cellulose impurities. J Microbiol Methods 144:145–151.  https://doi.org/10.1016/j.mimet.2017.10.017 CrossRefPubMedGoogle Scholar
  20. Habibi Y, Vignon MR (2008) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185.  https://doi.org/10.1007/s10570-007-9179-z CrossRefGoogle Scholar
  21. Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687.  https://doi.org/10.1007/s10570-006-9075-y CrossRefGoogle Scholar
  22. Hai LV, Zhai L, Kim HC et al (2018) Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods. Carbohydr Polym 191:65–70.  https://doi.org/10.1016/j.carpol.2018.03.008 CrossRefPubMedGoogle Scholar
  23. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813Google Scholar
  24. Hu W, Chen S, Yang J et al (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060.  https://doi.org/10.1016/j.carbpol.2013.09.102 CrossRefPubMedGoogle Scholar
  25. Huber T, Pang S, Staiger MP (2012) All-cellulose composite laminates. Compos Part A Appl Sci Manuf 43:1738–1745.  https://doi.org/10.1016/j.compositesa.2012.04.017 CrossRefGoogle Scholar
  26. Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164.  https://doi.org/10.1023/A:1009208603673 CrossRefGoogle Scholar
  27. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85.  https://doi.org/10.1039/c0nr00583e CrossRefPubMedGoogle Scholar
  28. Jia Y, Zhai X, Fu W et al (2016) Surfactant-free emulsions stabilized by tempo-oxidized bacterial cellulose. Carbohydr Polym 151:907–915.  https://doi.org/10.1016/j.carbpol.2016.05.099 CrossRefPubMedGoogle Scholar
  29. Lai C, Zhang S, Chen X, Sheng L (2014) Nanocomposite films based on TEMPO-mediated oxidized bacterial cellulose and chitosan. Cellulose 21:2757–2772.  https://doi.org/10.1007/s10570-014-0330-3 CrossRefGoogle Scholar
  30. Lawler DM (2005) Spectrophotometry | turbidimetry and nephelometry. In: Encyclopedia of analytical science. Elsevier, pp 343–351Google Scholar
  31. Lin D, Li R, Lopez-Sanchez P, Li Z (2015) Physical properties of bacterial cellulose aqueous suspensions treated by high pressure homogenizer. Food Hydrocoll 44:435–442.  https://doi.org/10.1016/j.foodhyd.2014.10.019 CrossRefGoogle Scholar
  32. Luo H, Xiong G, Hu D et al (2013) Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications. Mater Chem Phys 143:373–379.  https://doi.org/10.1016/j.matchemphys.2013.09.012 CrossRefGoogle Scholar
  33. Lutz A (2008) Óleos e Gorduras. Métodos físico-químicos para análise de Alimentos.  https://doi.org/10.1017/cbo9781107415324.004 CrossRefGoogle Scholar
  34. Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766.  https://doi.org/10.3390/ma6051745 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mohd Amin MCI, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473.  https://doi.org/10.1016/j.carbpol.2011.12.022 CrossRefGoogle Scholar
  36. Nge TT, Nogi M, Yano H, Sugiyama J (2010) Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold. Cellulose 17:349–363.  https://doi.org/10.1007/s10570-009-9394-x CrossRefGoogle Scholar
  37. Oh SS, Yoo DI, Shin Y, Kim HC et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391.  https://doi.org/10.1016/j.carres.2005.08.007 CrossRefPubMedGoogle Scholar
  38. Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10.  https://doi.org/10.1186/1754-6834-3-10 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Puangsin B, Yang Q, Saito T, Isogai A (2013) Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources. Int J Biol Macromol 59:208–213.  https://doi.org/10.1016/j.ijbiomac.2013.04.016 CrossRefPubMedGoogle Scholar
  40. Qiu K, Netravali AN (2014) A review of fabrication and applications of bacterial cellulose based nanocomposites. Polym Rev 54:598–626.  https://doi.org/10.1080/15583724.2014.896018 CrossRefGoogle Scholar
  41. Quiévy N, Jacquet N, Sclavons M et al (2010) Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. Polym Degrad Stab 95:306–314.  https://doi.org/10.1016/j.polymdegradstab.2009.11.020 CrossRefGoogle Scholar
  42. Rambabu N, Panthapulakkal S, Sain M, Dalai AK (2016) Production of nanocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Ind Crops Prod 83:746–754.  https://doi.org/10.1016/j.indcrop.2015.11.083 CrossRefGoogle Scholar
  43. Rodionova G, Eriksen Ø, Gregersen Ø (2012) TEMPO-oxidized cellulose nanofiber films: effect of surface morphology on water resistance. Cellulose 19:1115–1123.  https://doi.org/10.1007/s10570-012-9721-5 CrossRefGoogle Scholar
  44. Ruka DR, Simon GP, Dean KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr Polym 92:1717–1723.  https://doi.org/10.1016/j.carbpol.2012.11.007 CrossRefPubMedGoogle Scholar
  45. Ruka DR, Simon GP, Dean KM (2014) Bacterial cellulose and its use in renewable composites. In: Thakur VK (ed) Nanocellulose polymer nanocomposites: fundamentals and applications. Wiley, Hoboken, pp 89–130Google Scholar
  46. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989.  https://doi.org/10.1021/bm0497769 CrossRefPubMedGoogle Scholar
  47. Saito T, Nishiyama Y, Putaux JL et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691.  https://doi.org/10.1021/bm060154s CrossRefPubMedGoogle Scholar
  48. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491.  https://doi.org/10.1021/bm0703970 CrossRefPubMedGoogle Scholar
  49. Saito T, Uematsu T, Kimura S et al (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809.  https://doi.org/10.1039/c1sm06050c CrossRefGoogle Scholar
  50. Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129CrossRefGoogle Scholar
  51. Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545.  https://doi.org/10.1016/j.foodhyd.2013.07.012 CrossRefGoogle Scholar
  52. Siqueira G, Bras J, Dufresne A (2009) Cellulose Whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432.  https://doi.org/10.1021/bm801193d CrossRefPubMedGoogle Scholar
  53. Soni B, Hassan EB, Schilling MW, Mahmoud B (2016) Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties. Carbohydr Polym 151:779–789.  https://doi.org/10.1016/j.carbpol.2016.06.022 CrossRefPubMedGoogle Scholar
  54. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Polym Sci 37:815–827Google Scholar
  55. Uetani K, Yano H (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12:348–353.  https://doi.org/10.1021/bm101103p CrossRefPubMedGoogle Scholar
  56. Ul-Islam M, Khan T, Park JK (2012) Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications. Carbohydr Polym 89:1189–1197.  https://doi.org/10.1016/j.carbpol.2012.03.093 CrossRefPubMedGoogle Scholar
  57. Xu X, Liu F, Jiang L et al (2013) Cellulose nanocrystals vs. Cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009.  https://doi.org/10.1021/am302624t CrossRefPubMedGoogle Scholar
  58. Yamada Y, Yukphan P, Lan Vu HT et al (2012) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 58:397–404.  https://doi.org/10.2323/jgam.58.397 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Žepič V, Fabjan EŠ, Kasunič M et al (2014) Morphological, thermal, and structural aspects of dried and redispersed nanofibrillated cellulose (NFC). Holzforschung 68(657):667.  https://doi.org/10.1515/hf-2013-0132 CrossRefGoogle Scholar
  60. Zhang N, Zang GL, Shi C et al (2016) A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: preparation, characterization, and application for Cu(II) removal. J Hazard Mater 316:11–18.  https://doi.org/10.1016/j.jhazmat.2016.05.018 CrossRefPubMedGoogle Scholar
  61. Zhou Y, Saito T, Bergstrom L, Isogai A (2018) Acid-free preparation of cellulose nanocrystal by TEMPO oxidation and subsequent cavitation. Biomacromolecules 19:633–639.  https://doi.org/10.1021/acs.biomac.7b01730 CrossRefPubMedGoogle Scholar
  62. Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093.  https://doi.org/10.1016/j.carbpol.2009.10.045 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Eligenes Sampaio do Nascimento
    • 1
  • André Luís Sousa Pereira
    • 2
  • Matheus de Oliveira Barros
    • 3
  • Maria Karolina de Aaraújo Barroso
    • 4
  • Helder Levi Silva Lima
    • 1
  • Maria de Fatima Borges
    • 5
  • Judith Pessoa de Andrade Feitosa
    • 2
  • Henriette Monteiro Cordeiro de Azeredo
    • 5
    • 6
  • Morsyleide de Freitas Rosa
    • 5
    Email author return OK on get
  1. 1.Department of Chemical EngineeringFederal University of Ceará (UFC)FortalezaBrazil
  2. 2.Department of Organic and Inorganic ChemicalFederal University of Ceará (UFC)FortalezaBrazil
  3. 3.Department of Chemistry and EnvironmentFederal Institute of Ceará (UFC)FortalezaBrazil
  4. 4.Department of Food EngineeringFederal University of Ceará (UFC)FortalezaBrazil
  5. 5.Embrapa Agroindústria Tropical – Rua DraFortalezaBrazil
  6. 6.Embrapa InstrumentaçãoSão CarlosBrazil

Personalised recommendations