Advertisement

Cellulose

pp 1–15 | Cite as

Cellulose meets reticular chemistry: interactions between cellulosic substrates and metal–organic frameworks

  • Manuela Leticia Kim
  • Eugenio Hernán Otal
  • Juan P. HinestrozaEmail author
Review Paper
  • 107 Downloads

Abstract

We present a review of current research endeavors that merge relatively new chemical structures: metal–organic frameworks (MOFs), and one of the most studied and abundant molecules: cellulose. We analyze how cellulosic substrates have been modified to enable the growth of diverse MOFs, and we offer some insight on the myriad of applications for these new materials which include removal of pesticides, capture of pollutants, creation of antibacterial surfaces, decomposition of toxic compounds, selective gas adsorption and water purification. We believe that this unique combination between traditional and emerging materials—between natural and synthetic ones—can significantly expand the performance of cellulosic substrates.

Graphical abstract

Keywords

Cellulose Metal organic frameworks Functionalization Applications 

Notes

References

  1. Abdelhameed RM, Abdel-Gawad H, Elshahat M, Emam HE (2016) Cu–BTC@cotton composite: design and removal of ethion insecticide from water. RSC Adv 6:42324–42333.  https://doi.org/10.1039/C6RA04719J CrossRefGoogle Scholar
  2. Abdelhameed RM, Emam HE, Rocha J, Silva AMS (2017a) Cu-BTC metal–organic framework natural fabric composites for fuel purification. Fuel Process Technol 159:306–312.  https://doi.org/10.1016/j.fuproc.2017.02.001 CrossRefGoogle Scholar
  3. Abdelhameed RM, Kamel OMHM, Amr A, Rochas J, Silva AMS (2017b) Antimosquito activity of a titanium-organic framework supported on fabrics. ACS Appl Mater Interfaces 9:22112–22120.  https://doi.org/10.1021/acsami.7b03164 CrossRefGoogle Scholar
  4. Abdelhameed RM, Rehan M, Emam HE (2018) Figuration of Zr-based MOF@cotton fabric composite for potential kidney application. Carbohydr Polym 195:460–467.  https://doi.org/10.1016/j.carbpol.2018.04.122 CrossRefPubMedGoogle Scholar
  5. Ahmad T, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, Ahmad A (2010) Removal of pesticides from water and wastewater by different adsorbents: a review. J Environ Sci Health C 28:231–271.  https://doi.org/10.1080/10590501.2010.525782 CrossRefGoogle Scholar
  6. Alvaro M, Carbonell E, Ferrer B, Llabrés i Xamena FX, García H (2007) Semiconductor behavior of a metal-organic framework (MOF). Chem Eur J 13:5106–5112.  https://doi.org/10.1002/chem.200601003 CrossRefPubMedGoogle Scholar
  7. Au-Duong AN, Lee CK (2018) Flexible metal–organic framework-bacterial cellulose nanocomposite for iodine capture. Cryst Growth Des 18:356–363.  https://doi.org/10.1021/acs.cgd.7b01360 CrossRefGoogle Scholar
  8. Avila AG, Hinestroza JP (2008) Tough cotton: smart textiles. Nat Nanotechnol 3:458–459.  https://doi.org/10.1038/nnano.2008.233 CrossRefPubMedGoogle Scholar
  9. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939–943.  https://doi.org/10.1126/science.1152516 CrossRefPubMedGoogle Scholar
  10. Bo S, Ren W, Lei C, Xie Y, Cai Y, Wang S, Gao J, Ni Q, Yao J (2018) Flexible and porous cellulose aerogels/zeolitic imidazolate framework (ZIF-8) hybrids for adsorption removal of Cr(IV) from water. J Solid State Chem 262:135–141.  https://doi.org/10.1016/j.jssc.2018.02.022 CrossRefGoogle Scholar
  11. Bunge MA, Ruckart KN, Leavesley S, Leavesley S, Peterson GW, Nguyen N, West KN, Glover TG (2015) Modification of fibers with nanostructures using reactive dye chemistry. Ind Eng Chem Res 54:3821–3827.  https://doi.org/10.1021/acs.iecr.5b00089 CrossRefGoogle Scholar
  12. Bunge MA, Davis AB, West KN, Wheeler West C, Glover TG (2018) Synthesis and characterization of UiO-66-NH 2 metal–organic framework cotton composite textiles. Ind Eng Chem Res 57:9151–9161.  https://doi.org/10.1021/acs.iecr.8b01010 CrossRefGoogle Scholar
  13. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851.  https://doi.org/10.1021/ja8057953 CrossRefPubMedGoogle Scholar
  14. Chen B, Yang Z, Zhu Y, Xia Y (2014) Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J Mater Chem A 2:16811–16831.  https://doi.org/10.1039/C4TA02984D CrossRefGoogle Scholar
  15. Chen G, Koros WJ, Jones CW (2016) Hybrid polymer/UiO-66(Zr) and polymer/NaY fiber sorbents for mercaptan removal from natural gas. ACS Appl Mater Interfaces 8:9700–9709.  https://doi.org/10.1021/acsami.6b00897 CrossRefPubMedGoogle Scholar
  16. Cohen SM (2012) Postsynthetic methods for the functionalization of metal–organic frameworks. Chem Rev 112:970–1000.  https://doi.org/10.1021/cr200179u CrossRefPubMedGoogle Scholar
  17. Cong J, Lei F, Zhao T, Liu H, Wang J, Mengting L, Xu Y, Junkuo G (2017) Two Co-zeolite imidazolate frameworks with different topologies for degradation of organic dyes via peroxymonosulfate activation. J Solid State Chem 256:10–13.  https://doi.org/10.1016/j.jssc.2017.08.031 CrossRefGoogle Scholar
  18. Corma A, García H, Llabrés i Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655.  https://doi.org/10.1021/cr9003924 CrossRefPubMedGoogle Scholar
  19. da Silva Pinto M, Sierra-Avila CA, Hinestroza JP (2012) In situ synthesis of a Cu-BTC metal–organic framework (MOF 199) onto cellulosic fibrous substrates: cotton. Cellulose 19:1771–1779.  https://doi.org/10.1007/s10570-012-9752-y CrossRefGoogle Scholar
  20. De Coste JB, Peterson GW, Jasuja H, Glover TG, Huang Y, Walton K (2013) Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit. J Mater Chem A 1:5642.  https://doi.org/10.1039/c3ta10662d CrossRefGoogle Scholar
  21. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227.  https://doi.org/10.1016/j.mattod.2013.06.004 CrossRefGoogle Scholar
  22. Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8.  https://doi.org/10.1016/j.cocis.2017.01.004 CrossRefGoogle Scholar
  23. Fang Y, Ma Y, Zheng M, Yang P, Asiri AM, Wang X (2018) Metal–organic frameworks for solar energy conversion by photoredox catalysis. Coord Chem Rev 373:83–115.  https://doi.org/10.1016/j.ccr.2017.09.013 CrossRefGoogle Scholar
  24. Feng M, Zhang P, Zhou H-C, Sharma VK (2018) Water-stable metal–organic frameworks for aqueous removal of heavy metals and radionuclides: a review. Chemosphere 209:783–800.  https://doi.org/10.1016/j.chemosphere.2018.06.114 CrossRefPubMedGoogle Scholar
  25. Gadzikwa T, Farha OK, Malliakas CD, Kanatzidis MG, Hupp JT, Nguyen ST (2009) Selective bifunctional modification of a non-catenated metal–organic framework material via “click” chemistry. J Am Chem Soc 131:13613–13615.  https://doi.org/10.1021/ja904189d CrossRefPubMedGoogle Scholar
  26. Gagnon KJ, Perry HP, Clearfield A (2012) Conventional and unconventional metal–organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem Rev 112:1034–1054.  https://doi.org/10.1021/cr2002257 CrossRefPubMedGoogle Scholar
  27. Giannakoudakis DA, Hu Y, Florent M, Bandosz TJ (2017) Smart textiles of MOF/g-C3N4 nanospheres for the rapid detection/detoxification of chemical warfare agents. Nanoscale Horiz 2:356–364.  https://doi.org/10.1039/C7NH00081B CrossRefGoogle Scholar
  28. Hamid MRA, Jeong H-K (2018) Recent advances on mixed-matrix membranes for gas separation: opportunities and engineering challenges. Korean J Chem Eng 35:1577–1600.  https://doi.org/10.1007/s11814-018-0081-1 CrossRefGoogle Scholar
  29. Hindelang K, Kronast A, Vagin SI, Rieger B (2013) Functionalization of metal–organic frameworks through the postsynthetic transformation of olefin side groups. Chem Eur J 19:8244–8252.  https://doi.org/10.1002/chem.201300477 CrossRefPubMedGoogle Scholar
  30. Holtzapple MT (2003) Cellulose. In: Caballero B, Finglas P, Toldra F (eds) Encyclopedia of food sciences and nutrition. Elsevier, Amsterdam, pp 998–1007CrossRefGoogle Scholar
  31. Hou J, Luan Y, Huang X, Gao H, Yang M, Lu Y (2017) Facile synthesis of Cu3(BTC)2/cellulose acetate mixed matrix membranes and their catalytic applications in continuous flow process. New J Chem 41:9123–9129.  https://doi.org/10.1039/C7NJ00672A CrossRefGoogle Scholar
  32. Hou X, Zhou H, Zhang J, Cai Y, Huang F, Wei Q (2018) High adsorption pearl-necklace-like composite membrane based on metal–organic framework for heavy metal ion removal. Part Part Syst Charact 35:1700438.  https://doi.org/10.1002/ppsc.201700438 CrossRefGoogle Scholar
  33. Hsieh YL, Gordon S (2007) Cotton: science and technology. Elsevier, Amsterdam, pp 3–34CrossRefGoogle Scholar
  34. Hsu SH, Li CT, Chien HT, Salunkhe RR, Suzuki N, Yamauchi Y, Ho KC, Wu KCW (2015) Platinum-free counter electrode comprised of metal–organic-framework (MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells (DSSCs). Sci Rep 4:6893.  https://doi.org/10.1038/srep06983 CrossRefGoogle Scholar
  35. Huang A, Caro J (2011) Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity. Angew Chem Int Ed 50:4979–4982.  https://doi.org/10.1002/anie.201007861 CrossRefGoogle Scholar
  36. Janiak C, Vieth JK (2010) MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J Chem 34:2366.  https://doi.org/10.1039/c0nj00275e CrossRefGoogle Scholar
  37. Jiang D, Xu P, Wang H, Zeng G, Hueng D, Chen M, Lai C, Zhang C, Wan J, Xue M (2018) Strategies to improve metal organic frameworks photocatalyst’s performance for degradation of organic pollutants. Coord Chem Rev 376:449–466.  https://doi.org/10.1016/j.ccr.2018.08.005 CrossRefGoogle Scholar
  38. Jiao L, Wang Y, Jiang H-L, Xu Q (2018) Metal–organic frameworks as platforms for catalytic applications. Adv Mater 30:1703663.  https://doi.org/10.1002/adma.201703663 CrossRefGoogle Scholar
  39. Karadagli I, Schulz B, Schestakow M, Milow B, Gries T, Ratke L (2015) Production of porous cellulose aerogel fibers by an extrusion process. J Supercrit Fluids 106:105–114.  https://doi.org/10.1016/j.supflu.2015.06.011 CrossRefGoogle Scholar
  40. Karmakar S, Bhattacharjee S, De S (2017a) Experimental and modeling of fluoride removal using aluminum fumarate (AlFu) metal organic framework incorporated cellulose acetate phthalate mixed matrix membrane. J Environ Chem Eng 5:6087–6097.  https://doi.org/10.1016/j.jece.2017.11.035 CrossRefGoogle Scholar
  41. Karmakar S, Bhattacharjee S, De S (2017b) Experimental and modeling of fluoride removal using aluminum fumarate (AlFu) metal organic framework incorporated cellulose acetate phthalate mixed matrix membrane. J Environ Chem Eng 5:6087–6097.  https://doi.org/10.1016/j.jece.2017.11.035 CrossRefGoogle Scholar
  42. Keum Y, Park S, Chen Y-P, Park J (2018) Titanium-carboxylate metal–organic framework based on an unprecedented Ti-oxo chain cluster. Angew Chem Int Edn.  https://doi.org/10.1002/anie.201809762 CrossRefGoogle Scholar
  43. Kim J, Oliver AG, Neumann GT, Hicks JC (2015) Zn-MOFs containing pyridine and bi-pyridine carboxylate organic linkers and open Zn2+ sites: zinc metal–organic frameworks. Eur J Inorg Chem 2015:3011–3018.  https://doi.org/10.1002/ejic.201500245 CrossRefGoogle Scholar
  44. Ko J, Kim SK, Yoon Y, Cho KH, Song W, Kim TH, Myung S, Lee SS, Hwang YK, Kim SW, An KS (2018) Eco-friendly cellulose based solid electrolyte with high performance and enhanced low humidity performance by hybridizing with aluminum fumarate MOF. Mater Today Energy 9:11–18.  https://doi.org/10.1016/j.mtener.2018.04.007 CrossRefGoogle Scholar
  45. Lange LE, Obendorf SK (2015) Functionalization of cotton fiber by partial etherification and self-assembly of polyoxometalate encapsulated in Cu3(BTC)2 metal–organic framework. ACS Appl Mater Interfaces 7:3974–3980.  https://doi.org/10.1021/am506510q CrossRefPubMedGoogle Scholar
  46. Lange LE, Ochanda FO, Obendorf SK, Hinestroza JP (2014) CuBTC metal–organic frameworks enmeshed in polyacrylonitrile fibrous membrane remove methyl parathion from solutions. Fibers Polym 15(2):200–207.  https://doi.org/10.1007/s12221-014-0200-5 CrossRefGoogle Scholar
  47. Li H, Wang K, Sun Y, Lollar CT, Li J, Zhou HC (2018) Recent advances in gas storage and separation using metal–organic frameworks. Mater Today 21:108–121.  https://doi.org/10.1016/j.mattod.2017.07.006 CrossRefGoogle Scholar
  48. Liang Z, Qu C, Guo W, Zou R, Xu Q (2018) Pristine metal–organic frameworks and their composites for energy storage and conversion. Adv Mater 30:1702891.  https://doi.org/10.1002/adma.201702891 CrossRefGoogle Scholar
  49. Lu L, Hu C, Zhu Y, Zhang H, Li R, Xing Y (2018) Multi-functional finishing of cotton fabrics by water-based layer-by-layer assembly of metal–organic framework. Cellulose 25:4223–4238.  https://doi.org/10.1007/s10570-018-1838-8 CrossRefGoogle Scholar
  50. Matsumoto M, Kitaoka T (2016) Ultraselective gas separation by nanoporous metal–organic frameworks embedded in gas-barrier nanocellulose films. Adv Mater 28:1765–1769.  https://doi.org/10.1002/adma.201504784 CrossRefPubMedGoogle Scholar
  51. Mubashir M, Yeong YF, Lau KK, Chew TL, Norwahyu J (2018) Efficient CO2/N2 and CO2/CH4 separation using NH2-MIL-53(Al)/cellulose acetate (CA) mixed matrix membranes. Sep Purif Technol 199:140–151.  https://doi.org/10.1016/j.seppur.2018.01.038 CrossRefGoogle Scholar
  52. O’Keeffe M, Yaghi OM (2012) Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem Rev 112:675–702.  https://doi.org/10.1021/cr200205j CrossRefPubMedGoogle Scholar
  53. Olajire AA (2018) Synthesis chemistry of metal–organic frameworks for CO2 capture and conversion for sustainable energy future. Renew Sustain Energy Rev 92:570–607.  https://doi.org/10.1016/j.rser.2018.04.073 CrossRefGoogle Scholar
  54. Otal EH, Kim ML, Calvo ME, Karvonen L, Fabregas IO, Sierra CA, Hinestroza JP (2016) A panchromatic modification of the light absorption spectra of metal–organic frameworks. Chem Commun 52:6665–6668.  https://doi.org/10.1039/C6CC02319C CrossRefGoogle Scholar
  55. Ozer RR, Hinestroza JP (2015) One-step growth of isoreticular luminescent metal–organic frameworks on cotton fibers. RSC Adv 5:15198–15204.  https://doi.org/10.1039/C4RA15161E CrossRefGoogle Scholar
  56. Papazoi E, Douvali A, Rapti S, Skliri E, Armatas GS, Papaefstathiou GS, Wang X, Huang ZF, Kaziannis S, Kosmidis C, Hatzidimitriou AG, Lazarides T, Manos MJ (2017) A microporous Mg2+ MOF with cation exchange properties in a single-crystal-to-single-crystal fashion. Inorg Chem Front 4:530–536.  https://doi.org/10.1039/C6QI00548A CrossRefGoogle Scholar
  57. Park J, Oh M (2017) Construction of flexible metal–organic framework (MOF) papers through MOF growth on filter paper and their selective dye capture. Nanoscale 9:12850–12854.  https://doi.org/10.1039/C7NR04113F CrossRefPubMedGoogle Scholar
  58. Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe Romo FJ, Chae HK, O´Keefe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103:10186–10191.  https://doi.org/10.1073/pnas.0602439103 CrossRefPubMedGoogle Scholar
  59. Peng Y, Huang H, Zhang Y, Kang C, Chen S, Song L, Liu D, Zhong C (2018) A versatile MOF-based trap for heavy metal ion capture and dispersion. Nat Commun 9:187.  https://doi.org/10.1038/s41467-017-02600-2 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Pimentel BR, Fultz AW, Presnell KV, Lively RP (2017) Synthesis of water-sensitive metal–organic frameworks within fiber sorbent modules. Ind Eng Chem Res 56:5070–5077.  https://doi.org/10.1021/acs.iecr.7b00630 CrossRefGoogle Scholar
  61. Qi K, Hou R, Zaman S, Qiu Y, Xia BY, Duan H (2018) Construction of metal–organic framework/conductive polymer hybrid for all-solid-state fabric supercapacitor. ACS Appl Mater Interfaces 10:18021–18028.  https://doi.org/10.1021/acsami.8b05802 CrossRefPubMedGoogle Scholar
  62. Qian L, Lei D, Duan X, Zhang S, Song W, Hou C, Tang R (2018) Design and preparation of metal–organic framework papers with enhanced mechanical properties and good antibacterial capacity. Carbohydr Polym 192:44–51.  https://doi.org/10.1016/j.carbpol.2018.03.049 CrossRefPubMedGoogle Scholar
  63. Ren W, Gao J, Lei C, Xie Y, Cai Y, Ni Q, Yao J (2018) Recyclable metal–organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants. Chem Eng J 349:766–774CrossRefGoogle Scholar
  64. Roales J, Moscoso F, Gámez F, Lopes Costa T, Sousaraei A, Casado S, Castro Smirnov JR, Cabanillas Gonzalez J, Almeida J, Queirós C, Cunha Silva L, Silva AMG, Pedrosa JM (2017) Preparation of luminescent metal–organic framework films by soft-imprinting for 2,4-dinitrotoluene sensing. Materials 10:992.  https://doi.org/10.3390/ma10090992 CrossRefPubMedCentralGoogle Scholar
  65. Rodríguez HS, Hinestroza JP, Ochoa-Puentes C, Sierra CS, Soto CY (2014) Antibacterial activity against Escherichia coli of Cu-BTC (MOF-199) metal–organic framework immobilized onto cellulosic fibers. J Appl Polym Sci 131:40815.  https://doi.org/10.1002/app.40815 CrossRefGoogle Scholar
  66. Rubin HN, Neufeld BH, Reynolds MM (2018) Surface-anchored metal–organic framework–cotton material for tunable antibacterial copper delivery. ACS Appl Mater Interfaces 10:15189–15199.  https://doi.org/10.1021/acsami.7b19455 CrossRefPubMedGoogle Scholar
  67. Savonnet M, Bazer-Bachi D, Bats N, Perez Pellitero J, Jeanneau E, Lecocq V, Pinel C (2010) Generic postfunctionalization route from amino-derived metal–organic frameworks. J Am Chem Soc 132:4518–4519.  https://doi.org/10.1021/ja909613e CrossRefPubMedGoogle Scholar
  68. Schelling M, Kim M, Otal E, Hinestroza J (2018) Decoration of cotton fibers with a water-stable metal–organic framework (UiO-66) for the decomposition and enhanced adsorption of micropollutants in water. Bioengineering 5:14.  https://doi.org/10.3390/bioengineering5010014 CrossRefPubMedCentralGoogle Scholar
  69. Silva CG, Corma A, García H (2010) Metal–organic frameworks as semiconductors. J Mater Chem 20:3141.  https://doi.org/10.1039/b924937k CrossRefGoogle Scholar
  70. Statistical Review of World Energy | Energy economics | BP. bp.com. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
  71. Trinh DX, Tran TPN, Taniike T (2017) Fabrication of new composite membrane filled with UiO-66 nanoparticles and its application to nanofiltration. Sep Purif Technol 177:249–256.  https://doi.org/10.1016/j.seppur.2017.01.004 CrossRefGoogle Scholar
  72. Valenzano L, Civalleri B, Chavan S, Bordiga S, Nilsen MH, Jakobsen S, Lillerud KP, Lamberti C (2011) Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem Mater 23:1700–1718.  https://doi.org/10.1021/cm1022882 CrossRefGoogle Scholar
  73. Wagner S, Bonderover E, Jordan WB, Sturm JC (2002) Electrotextiles: concepts and challenges. Int J High Speed Electron Syst 12:391–399.  https://doi.org/10.1142/S0129156402001186 CrossRefGoogle Scholar
  74. Wang C, Qian X, An X (2015) In situ green preparation and antibacterial activity of copper-based metal–organic frameworks/cellulose fibers (HKUST-1/CF) composite. Cellulose 22:3789–3797.  https://doi.org/10.1007/s10570-015-0754-4 CrossRefGoogle Scholar
  75. Wang N, Ouyang X-K, Yang L-Y, Omer AM (2017) Fabrication of a magnetic cellulose nanocrystal/metal–organic framework composite for removal of Pb(II) from water. ACS Sustain Chem Eng 5:10447–10458.  https://doi.org/10.1021/acssuschemeng.7b02472 CrossRefGoogle Scholar
  76. Xu X-Y, Yan B (2018) A fluorescent wearable platform for sweat Cl analysis and logic smart-device fabrication based on color adjustable lanthanide MOFs. J Mater Chem C 6:1863–1869.  https://doi.org/10.1039/C7TC05204A CrossRefGoogle Scholar
  77. WHO | Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum. WHO. http://www.who.int/water_sanitation_health/publications/drinking-water-quality-guidelines-4-including-1st-addendum/en/
  78. Yaghi O (2016) Reticular chemistry—construction, properties, and precision reactions of frameworks. J Am Chem Soc 138:15507–15509.  https://doi.org/10.1021/jacs.6b11821 CrossRefPubMedGoogle Scholar
  79. Yang L-M, Ganz E, Svelle S, Tilset M (2014) Computational exploration of newly synthesized zirconium metal–organic frameworks UiO-66, -67, -68 and analogues. J Mater Chem C 2:7111–7125.  https://doi.org/10.1039/C4TC00902A CrossRefGoogle Scholar
  80. Yang J, Zhang Y-B, Liu Q, Trickett CA, Gutiérrez Puebla E, Monge MA, Cong H, Aldossary A, Deng H, Yaghi OM (2017a) Principles of designing extra-large pore openings and cages in zeolitic imidazolate frameworks. J Am Chem Soc 139:6448–6455.  https://doi.org/10.1021/jacs.7b02272 CrossRefPubMedGoogle Scholar
  81. Yang Q, Zhang M, Song S, Yang B (2017b) Surface modification of PCC filled cellulose paper by MOF-5 (Zn3(BDC)2) metal–organic frameworks for use as soft gas adsorption composite materials. Cellulose 24:3051–3060.  https://doi.org/10.1007/s10570-017-1331-9 CrossRefGoogle Scholar
  82. Yang K, Dai Y, Zheng W, Ruan X, Li H, He G (2018) ZIFs-modified GO plates for enhanced CO2 separation performance of ethyl cellulose based mixed matrix membranes. Sep Purif Technol 4:44.  https://doi.org/10.1016/j.seppur.2018.04.080 CrossRefGoogle Scholar
  83. Yuan S, Feng L, Wang K, Jiadong P, Bosch M, Lollar C, Sun Y, Qin J, Yang X, Zhang P, Wang Q, Zou L, Zhang Y, Zhang L, Fang Y, Li J, Zhou HC (2018) Stable metal–organic frameworks: design, synthesis, and applications. Adv Mater 30:1704303.  https://doi.org/10.1002/adma.201704303 CrossRefGoogle Scholar
  84. Zhao Z, Ma X, Kasik A, Li Z, Lin ZS (2013) Gas separation properties of metal organic framework (MOF-5) membranes. Ind Eng Chem Res 52:1102–1108.  https://doi.org/10.1021/ie202777q CrossRefGoogle Scholar
  85. Zhou Z, Xing X, Tian C, Wei W, Li D, Hu F, Du S (2018) A multifunctional nanocage-based MOF with tri- and tetranuclear zinc cluster secondary building units. Sci Rep 8:3117.  https://doi.org/10.1038/s41598-018-21382-1 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zhu H, Yang X, Cranston ED, Zhu S (2016) Flexible and porous nanocellulose aerogels with high loadings of metal–organic-framework particles for separations applications. Adv Mater 28:7652–7657.  https://doi.org/10.1002/adma.201601351 CrossRefPubMedGoogle Scholar
  87. Zhu L, Zong L, Wu X, Li M, Wang H, You J, Li C (2018) Shapeable fibrous aerogels of metal–organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 12:4462–4468.  https://doi.org/10.1021/acsnano.8b00566 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Division of Porous MaterialsUNIDEF, CITEDEF, CONICETBuenos AiresArgentina
  2. 2.Department of Fiber Science and Apparel DesignCornell UniversityIthacaUSA

Personalised recommendations