Advertisement

Cellulose

pp 1–46 | Cite as

Twenty-five years of cellulose chemistry: innovations in the dissolution of the biopolymer and its transformation into esters and ethers

  • Marc Kostag
  • Martin Gericke
  • Thomas Heinze
  • Omar A. El SeoudEmail author
Review Paper
  • 84 Downloads

Abstract

The anniversary of the journal “Cellulose” is an opportunity to review innovations that were introduced during the past 25 years. Of these, from our perspective, the development of solvents that dissolve cellulose physically, i.e., without formation of covalent bonds is most relevant. The reasons are that cellulose can be regenerated from these media in different shapes and transformed into many important derivatives. Twenty-five years is a long time-span! As the volume of information on the applications of the above-mentioned solvents in cellulose chemistry is extensive, we made choices to reach a balance between the amount of material covered and the length of the review. Consequently, we focus on cellulose derivatization under homogeneous reaction conditions to produce selected derivatives. We dwell on the latter because a comprehensive discussion was recently published on derivatization under heterogeneous and homogeneous conditions (Heinze et al. in Cellulose derivatives, Springer, Cham, pp 259–292, 2018a). The derivatives selected are esters of organic acids, ionic and nonionic ethers because of their tremendous commercial and scientific importance. Cellulose derivatization in homogeneous media is advantageous because of much better control of product properties relative to those obtained under the heterogeneous counterparts. These properties include degree of substitution in the anhydroglucose unit and along the biopolymer back-bone, and regioselectivity. Thus, novel cellulose derivatives were prepared that are not accessible under heterogeneous conditions. The requirement to dissolve cellulose physically is to disrupt hydrogen bonding and hydrophobic interactions. Thus, the solvents employed to dissolve cellulose are usually composed of strong electrolytes whose cations and anions interact preferentially with cellulose. These electrolytes are used pure or as solutions in water or dipolar aprotic solvents. Salient examples include LiCl/N,N-dimethylacetamide, tetra(n-butyl)ammonium fluoride·3H2O/dimethyl sulfoxide, ionic liquids, salts of quaternary amines and super-bases. We discuss briefly the essentials of each solvent in terms of its mechanism of cellulose dissolution and show the most relevant results regarding its application for obtaining esters and ethers and back the discussion with relevant references. This information is summarized at the end of the review. We hope that this historical perspective shows the innovations made since the first publication of “Cellulose” and points out to future possibilities—with potential industrial application—of this renewable raw material and its biocompatible and biodegradable derivatives.

Graphical abstract

Keywords

Novel cellulose solvents Cellulose dissolution mechanism Homogeneous derivatization Cellulose esters Cellulose ethers 

Abbreviations

AcO

Acetate

AGU

Anhydroglucose unit

[AlMeIm]Cl

1-Allyl-3-methylimidazolium chloride

BC

Bacterial cellulose

[BuMeIm]Cl

1-(n-Butyl)-3-methylimidazolium chloride

CDI

Carbonyldiimidazole

CT

Cellulose tosylate

CHPTMA Cl

(3-Chloro-2-hydroxypropyl)trimethyl-ammonium chloride

DAS

Dipolar aprotic solvent

DBN

1,5-Diazabicyclo[4.3.0]non-5-ene

DBU

1,8-Diazabicyclo[5.4.0]undec-7-ene

DCC

N,N′-Dicyclohexylcarbodiimide

DLS

Dynamic light scattering

DMAc

N,N-Dimethylacetamide

DMF

N,N-Dimethylformamide

DMSO

Dimethyl sulfoxide

DP

Average degree of polymerization

DS

Average degree of substitution

EPTMA Cl

(2,3-Epoxypropyl)trimethylammonium chloride

ET(30)

Solvent empirical polarity parameter (in kcal mol−1) as determined by the solvatochromic probe 2,6-diphenyl-4-(2,4,6-triphenylpyridin-1-ium-1-yl)phenolate

[EtMeIm]AcO

1-Ethyl-3-methylimidazolium acetate

HEC

Hydroxyethyl cellulose

HPC

Hydroxypropyl cellulose

Ic

Index of crystallinity

IL

Ionic liquid

ImIL

Imidazolium based IL

log P

Partition coefficient of a substance between (mutually saturated) n-octanol and water

MALS

Multiangle light scattering

MC

Methyl cellulose

MD

Molecular dynamic simulations

MM

Average molar mass5

MS

Average degree of molar substitution

[N2228]Cl

Triethyl(n-octyl)ammonium chloride

NMMO

N-Methylmorpholine-N-oxide

QAE

Quaternary ammonium electrolyte

SA

Solvent Lewis acidity

SB

Solvent Lewis basicity

[TBA]F·3H2O

Tetra(n-butyl)ammonium fluoride trihydrate

TC

Trityl cellulose

TsCl

Tosyl chloride

Notes

Acknowledgments

O. A. El Seoud and M. Kostag thank the FAPESP research foundation for financial support and postdoctoral fellowship (Grants 2014/22136-4 and 2016/22869-7, respectively). O. A. El Seoud thanks CNPq for research productivity fellowship (Grant 307022/2014-5). The financial support of the DFG-funded Collaborative Research Centre PolyTarget (SFB 1278, Project A02) is gratefully acknowledged by T. Heinze. We thank Gabriel O. El Seoud for the art work.

References

  1. Abe M, Sugimura K, Nishio Y (2016) Regioselectivity in acetylation of cellulose in ionic liquids. ChemistrySelect 1:2474–2478.  https://doi.org/10.1002/slct.201600520 CrossRefGoogle Scholar
  2. Abe M, Sugimura K, Nishiyama Y, Nishio Y (2017) Rapid benzylation of cellulose in tetra-n-butylphosphonium hydroxide aqueous solution at room temperature. ACS Sustain Chem Eng 5:4505–4510.  https://doi.org/10.1021/acssuschemeng.7b00492 CrossRefGoogle Scholar
  3. Achtel C, Heinze T (2016) Homogeneous acetylation of cellulose in the new solvent triethyloctylammonium chloride in combination with organic liquids. Macromol Chem Phys 217:2041–2048.  https://doi.org/10.1002/macp.201600217 CrossRefGoogle Scholar
  4. Achtel C, Jedvert K, Kosan B et al (2017) Dissolution capacity of novel cellulose solvents based on triethyloctylammonium chloride. Macromol Chem Phys 218:1700208.  https://doi.org/10.1002/macp.201700208 CrossRefGoogle Scholar
  5. Achtel C, Jedvert K, Kostag M et al (2018) Surprising insensitivity of homogeneous acetylation of cellulose dissolved in triethyl(n-octyl)ammonium chloride/molecular solvent on the solvent polarity. Macromol Mater Eng 305:1800032.  https://doi.org/10.1002/mame.201800032 CrossRefGoogle Scholar
  6. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications—a review. J Adv Res 6:105–121.  https://doi.org/10.1016/j.jare.2013.07.006 CrossRefPubMedGoogle Scholar
  7. Alves L, Medronho B, Antunes FE et al (2016a) Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents. ellulose 23:247–258.  https://doi.org/10.1007/s10570-015-0809-6 CrossRefGoogle Scholar
  8. Alves L, Medronho B, Antunes FE et al (2016b) Dissolution state of cellulose in aqueous systems. 2. Acidic solvents. Carbohydr Polym 151:707–715.  https://doi.org/10.1016/j.carbpol.2016.06.015 CrossRefPubMedGoogle Scholar
  9. Amigues E, Hardacre C, Keane G et al (2006) Ionic liquids—media for unique phosphorus chemistry. Chem Commun 1:72–74.  https://doi.org/10.1039/b509248e CrossRefGoogle Scholar
  10. Amyes TL, Diver ST, Richard JP et al (2004) Formation and stability of N-heterocyclic carbenes in water: the carbon acid pKa of imidazolium cations in aqueous solution. J Am Chem Soc 126:4366–4374.  https://doi.org/10.1021/ja039890j CrossRefPubMedGoogle Scholar
  11. Anastas PT, Wasserscheid P, Stark A (2013) Green solvents: ionic liquids, 1st edn. Wiley-VCH, WeinheimGoogle Scholar
  12. Aono H, Tatsumi D, Matsumoto T (2006) Characterization of aggregate structure in mercerized cellulose/LiCl·DMAc solution using light scattering and rheological measurements. Biomacromolecules 7:1311–1317.  https://doi.org/10.1021/bm050889h CrossRefPubMedGoogle Scholar
  13. Ass BAP, Frollini E, Heinze T (2004) Studies on the homogeneous acetylation of cellulose in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride trihydrate. Macromol Biosci 4:1008–1013.  https://doi.org/10.1002/mabi.200400088 CrossRefPubMedGoogle Scholar
  14. ASTM D871 - 96 (2004) Standard test methods of testing cellulose acetate.  https://doi.org/10.1520/d0871-96r04
  15. Austin PR (1977) Chitin solution, US05728257Google Scholar
  16. Baba K, Ono H, Itoh E et al (2006) Kinetic study of thermal Z to E isomerization reactions of azobenzene and 4-dimethylamino-4′-nitroazobenzene in ionic liquids [1-R-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with R = butyl, pentyl, and hexyl]. Chem A Eur J 12:5328–5333.  https://doi.org/10.1002/chem.200600081 CrossRefGoogle Scholar
  17. Bao Y, Qian H, Lu Z, Cui S (2015) Revealing the hydrophobicity of natural cellulose by single-molecule experiments. Macromolecules 48:3685–3690.  https://doi.org/10.1021/acs.macromol.5b00260 CrossRefGoogle Scholar
  18. Barthel S, Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem 8:301–306.  https://doi.org/10.1039/B513157J CrossRefGoogle Scholar
  19. Bergenstråhle M, Wohlert J, Himmel ME, Brady JW (2010) Simulation studies of the insolubility of cellulose. Carbohyd Res 345:2060–2066.  https://doi.org/10.1016/j.carres.2010.06.017 CrossRefGoogle Scholar
  20. Berger S, Braun S (2004) 200 and more NMR experiments. Wiley-VCH, LondonGoogle Scholar
  21. Bialik E, Stenqvist B, Fang Y et al (2016) Ionization of cellobiose in aqueous alkali and the mechanism of cellulose dissolution. J Phys Chem Lett 7:5044–5048.  https://doi.org/10.1021/acs.jpclett.6b02346 CrossRefPubMedGoogle Scholar
  22. Bioni TA, Malek NI, Seoud OAE (2018) Kinetics of cellulose acylation with carboxylic anhydrides and N-acylimidazoles in ionic liquid/molecular solvent mixtures: relevance to the synthesis of mixed cellulose esters. Lenzinger Berichte 94:57–66Google Scholar
  23. Buchanan CM, Buchanan NL, Guzman-Morales E (2013) Regioselectively substituted cellulose esters produced in a tetraalkylammonium alkylphosphate ionic liquid process and products produced therefrom EP2419453A1, 22 Feb 2012Google Scholar
  24. Budtova T, Navard P (2015) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–55.  https://doi.org/10.1007/s10570-015-0779-8 CrossRefGoogle Scholar
  25. Burchard W (2003) Solubility and solution structure of cellulose derivatives. Cellulose 10:213–225.  https://doi.org/10.1023/A:1025160620576 CrossRefGoogle Scholar
  26. Burchard W, Habermann N, Klüfers P et al (1994) Cellulose in Schweizer’s reagent: a stable, polymeric metal complex with high chain stiffness. Angew Chem Int Ed Engl 33:884–887.  https://doi.org/10.1002/anie.199408841 CrossRefGoogle Scholar
  27. Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548.  https://doi.org/10.1002/mabi.200400222 CrossRefPubMedGoogle Scholar
  28. Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromol 7:183–189.  https://doi.org/10.1021/bm0505585 CrossRefGoogle Scholar
  29. Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci Part B Polym Phys 44:3093–3101.  https://doi.org/10.1002/polb.20938 CrossRefGoogle Scholar
  30. Cai J, Zhang L, Chang C et al (2007) Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. ChemPhysChem 8:1572–1579.  https://doi.org/10.1002/cphc.200700229 CrossRefPubMedGoogle Scholar
  31. Cai J, Zhang L, Liu S et al (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351.  https://doi.org/10.1021/ma801110g CrossRefGoogle Scholar
  32. Canal JP, Ramnial T, Dickie DA, Clyburne JAC (2006) From the reactivity of N-heterocyclic carbenes to new chemistry in ionic liquids. Chem Commun 17:1809–1818.  https://doi.org/10.1039/b512462j CrossRefGoogle Scholar
  33. Cao Y, Wu J, Meng T et al (2007) Acetone-soluble cellulose acetates prepared by one-step homogeneous acetylation of cornhusk cellulose in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Carbohyd Polym 69:665–672.  https://doi.org/10.1016/j.carbpol.2007.02.001 CrossRefGoogle Scholar
  34. Cao Y, Zhang J, He J et al (2010) Homogeneous acetylation of cellulose at relatively high concentrations in an ionic liquid. Chin J Chem Eng 18:515–522.  https://doi.org/10.1016/S1004-9541(10)60252-2 CrossRefGoogle Scholar
  35. Cao Y, Li H, Zhang J (2011) Homogeneous synthesis and characterization of cellulose acetate butyrate (CAB) in 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid. Ind Eng Chem Res 50:7808–7814.  https://doi.org/10.1021/ie2004362 CrossRefGoogle Scholar
  36. Cao X, Sun S, Peng X et al (2013) Rapid synthesis of cellulose esters by transesterification of cellulose with vinyl esters under the catalysis of NaOH or KOH in DMSO. J Agric Food Chem 61:2489–2495.  https://doi.org/10.1021/jf3055104 CrossRefPubMedGoogle Scholar
  37. Cao X, Peng X, Zhong L et al (2014) A novel transesterification system to rapidly synthesize cellulose aliphatic esters. Cellulose 21:581–594.  https://doi.org/10.1007/s10570-013-0102-5 CrossRefGoogle Scholar
  38. Casarano R, Fidale LC, Lucheti CM et al (2011) Expedient, accurate methods for the determination of the degree of substitution of cellulose carboxylic esters: application of UV–Vis spectroscopy (dye solvatochromism) and FTIR. Carbohyd Polym 83:1285–1292.  https://doi.org/10.1016/j.carbpol.2010.09.035 CrossRefGoogle Scholar
  39. Casarano R, Pires PAR, El Seoud OA (2014) Acylation of cellulose in a novel solvent system: solution of dibenzyldimethylammonium fluoride in DMSO. Carbohyd Polym 101:444–450.  https://doi.org/10.1016/j.carbpol.2013.09.043 CrossRefGoogle Scholar
  40. Chang C, Duan B, Zhang L (2009a) Fabrication and characterization of novel macroporous cellulose–alginate hydrogels. Polymer 50:5467–5473.  https://doi.org/10.1016/j.polymer.2009.06.001 CrossRefGoogle Scholar
  41. Chang C, Peng J, Zhang L, Pang D-W (2009b) Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J Mater Chem 19:7771–7776.  https://doi.org/10.1039/B908835K CrossRefGoogle Scholar
  42. Chang C, Duan B, Cai J, Zhang L (2010a) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100.  https://doi.org/10.1016/j.eurpolymj.2009.04.033 CrossRefGoogle Scholar
  43. Chang C, Zhang L, Zhou J et al (2010b) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohyd Polym 82:122–127.  https://doi.org/10.1016/j.carbpol.2010.04.033 CrossRefGoogle Scholar
  44. Chang C, He M, Zhou J, Zhang L (2011) Swelling behaviors of pH- and salt-responsive cellulose-based hydrogels. Macromolecules 44:1642–1648.  https://doi.org/10.1021/ma102801f CrossRefGoogle Scholar
  45. Chang C, Teramoto Y, Nishio Y (2013) Synthesis of O-(2,3-dihydroxypropyl) cellulose in NaOH/urea aqueous solution: as a precursor for introducing “necklace-like” structure. J Polym Sci Part A Polym Chem 51:3590–3597.  https://doi.org/10.1002/pola.26773 CrossRefGoogle Scholar
  46. Chen J, Su M, Zhang X et al (2014) The role of cations in homogeneous succinoylation of mulberry wood cellulose in salt-containing solvents under mild conditions. Cellulose 21:4081–4091.  https://doi.org/10.1007/s10570-014-0429-6 CrossRefGoogle Scholar
  47. Chen W, Feng Y, Zhang M et al (2015) Homogeneous benzoylation of cellulose in 1-allyl-3-methylimidazolium chloride: hammett correlation, mechanism and regioselectivity. RSC Adv 5:58536–58542.  https://doi.org/10.1039/C5RA08911E CrossRefGoogle Scholar
  48. Chen M-J, Li R-M, Zhang X-Q et al (2017) Homogeneous transesterification of sugar cane bagasse toward sustainable plastics. ACS Sustain Chem Eng 5:360–366.  https://doi.org/10.1021/acssuschemeng.6b01735 CrossRefGoogle Scholar
  49. Chen H, Yang F, Du J et al (2018a) Efficient transesterification reaction of cellulose with vinyl esters in DBU/DMSO/CO2 solvent system at low temperature. Cellulose 25:6935–6945.  https://doi.org/10.1007/s10570-018-2078-7 CrossRefGoogle Scholar
  50. Chen Y, Pötschke P, Pionteck J et al (2018b) Smart cellulose/graphene composites fabricated by in situ chemical reduction of graphene oxide for multiple sensing applications. J Mater Chem A 6:7777–7785.  https://doi.org/10.1039/C8TA00618K CrossRefGoogle Scholar
  51. Ciacco GT, Liebert TF, Frollini E, Heinze TJ (2003) Application of the solvent dimethyl sulfoxide/tetrabutyl-ammonium fluoride trihydrate as reaction medium for the homogeneous acylation of Sisal cellulose. Cellulose 10:125–132.  https://doi.org/10.1023/A:1024064018664 CrossRefGoogle Scholar
  52. Ciacco GT, Morgado DL, Frollini E et al (2010) Some aspects of acetylation of untreated and mercerized sisal cellulose. J Braz Chem Soc 21:71–77.  https://doi.org/10.1590/S0103-50532010000100012 CrossRefGoogle Scholar
  53. Ciolacu D, Rudaz C, Vasilescu M, Budtova T (2016) Physically and chemically cross-linked cellulose cryogels: structure, properties and application for controlled release. Carbohyd Polym 151:392–400.  https://doi.org/10.1016/j.carbpol.2016.05.084 CrossRefGoogle Scholar
  54. Das D, Das B, Hazra DK (2002) Conductance of some 1:1 electrolytes in N,N-dimethylacetamide at 25°C. J Solut Chem 31:425–431.  https://doi.org/10.1023/A:1015815500299 CrossRefGoogle Scholar
  55. Dissanayake N, Thalangamaarachchige VD, Troxell S et al (2018) Substituent effects on cellulose dissolution in imidazolium-based ionic liquids. Cellulose 25:6887–6900.  https://doi.org/10.1007/s10570-018-2055-1 CrossRefGoogle Scholar
  56. Dupont A-L (2003) Cellulose in lithium chloride/N,N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions. Polymer 44:4117–4126.  https://doi.org/10.1016/S0032-3861(03)00398-7 CrossRefGoogle Scholar
  57. Dutta T, Shi J, Sun J et al (2015) Ionic liquid pretreatment of lignocellulosic biomass for biofuels and chemicals. In: Bogel-Lukasik R (ed) Ionic liquids in the biorefinery concept. The Royal Society of Chemistry, Cambridge, pp 65–94CrossRefGoogle Scholar
  58. Ebner G, Schiehser S, Potthast A, Rosenau T (2008) Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett 49:7322–7324.  https://doi.org/10.1016/j.tetlet.2008.10.052 CrossRefGoogle Scholar
  59. Edgar KJ, Buchanan CM, Debenham JS et al (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688.  https://doi.org/10.1016/S0079-6700(01)00027-2 CrossRefGoogle Scholar
  60. Efimova A, Varga J, Matuschek G et al (2018) Thermal resilience of imidazolium-based ionic liquids—studies on short- and long-term thermal stability and decomposition mechanism of 1-alkyl-3-methylimidazolium halides by thermal analysis and single-photon ionization time-of-flight mass spectrometry. J Phys Chem B 122:8738–8749.  https://doi.org/10.1021/acs.jpcb.8b06416 CrossRefPubMedGoogle Scholar
  61. Egal M, Budtova T, Navard P (2008) The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 15:361–370.  https://doi.org/10.1007/s10570-007-9185-1 CrossRefGoogle Scholar
  62. El Seoud OA, Marson GA, Ciacco GT, Frollini E (2000) An efficient, one-pot acylation of cellulose under homogeneous reaction conditions. Macromol Chem Phys 201:882–889.  https://doi.org/10.1002/(SICI)1521-3935(20000501)201:8%3c882:AID-MACP882%3e3.0.CO;2-I CrossRefGoogle Scholar
  63. El Seoud OA, Fidale LC, Ruiz N et al (2008) Cellulose swelling by protic solvents: which properties of the biopolymer and the solvent matter? Cellulose 15:371–392.  https://doi.org/10.1007/s10570-007-9189-x CrossRefGoogle Scholar
  64. El Seoud OA, da Silva VC, Possidonio S et al (2011) Microwave-assisted derivatization of cellulose, 2—the surprising effect of the structure of ionic liquids on the dissolution and acylation of the biopolymer. Macromol Chem Phys 212:2541–2550.  https://doi.org/10.1002/macp.201100348 CrossRefGoogle Scholar
  65. El Seoud OA, Nawaz H, Arêas E et al (2013) Chemistry and applications of polysaccharide solutions in strong electrolytes/dipolar aprotic solvents: an overview. Molecules 18:1270–1313.  https://doi.org/10.3390/molecules18011270 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Eliza MY, Shahruddin M, Noormaziah J, Rosli WDW (2015) Carboxymethyl cellulose (CMC) from oil palm empty fruit bunch (OPEFB) in the new solvent dimethyl sulfoxide (DMSO)/tetrabutylammonium fluoride (TBAF). J Phys Conf Ser 622:012026.  https://doi.org/10.1088/1742-6596/622/1/012026 CrossRefGoogle Scholar
  67. Elschner T, Ganske K, Heinze T (2013) Synthesis and aminolysis of polysaccharide carbonates. Cellulose 20:339–353.  https://doi.org/10.1007/s10570-012-9819-9 CrossRefGoogle Scholar
  68. Elschner T, Kötteritzsch M, Heinze T (2014) Synthesis of cellulose tricarbonates in 1-butyl-3-methylimidazolium chloride/pyridine. Macromol Biosci 14:161–165.  https://doi.org/10.1002/mabi.201300345 CrossRefPubMedGoogle Scholar
  69. Enders D, Niemeier O, Henseler A (2007) Organocatalysis by N-heterocyclic carbenes. Chem Rev 107:5606–5655.  https://doi.org/10.1021/cr068372z CrossRefPubMedGoogle Scholar
  70. Erdmenger T, Haensch C, Hoogenboom R, Schubert US (2007) Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride. Macromol Biosci 7:440–445.  https://doi.org/10.1002/mabi.200600253 CrossRefPubMedGoogle Scholar
  71. Ferreira DC, Bastos GS, Pfeifer A et al (2016) Cellulose carboxylate/tosylate mixed esters: synthesis, properties and shaping into microspheres. Carbohyd Polym 152:79–86.  https://doi.org/10.1016/j.carbpol.2016.06.075 CrossRefGoogle Scholar
  72. Fidale LC, Köhler S, Prechtl MHG et al (2006) Simple, expedient methods for the determination of water and electrolyte contents of cellulose solvent systems. Cellulose 13:581–592.  https://doi.org/10.1007/s10570-005-9036-x CrossRefGoogle Scholar
  73. Fidale LC, Possidonio S, Seoud OAE (2009) Application of 1-allyl-3-(1-butyl)imidazolium chloride in the synthesis of cellulose esters: properties of the ionic liquid, and comparison with other solvents. Macromol Biosci 9:813–821.  https://doi.org/10.1002/mabi.200900034 CrossRefPubMedGoogle Scholar
  74. Fidale LC, Heinze T, El Seoud OA (2013) Perichromism: a powerful tool for probing the properties of cellulose and its derivatives. Carbohyd Polym 93:129–134.  https://doi.org/10.1016/j.carbpol.2012.06.061 CrossRefGoogle Scholar
  75. Fox SC, Edgar KJ (2012) Staudinger reduction chemistry of cellulose: synthesis of selectively O-acylated 6-amino-6-deoxy-cellulose. Biomacromolecules 13:992–1001.  https://doi.org/10.1021/bm2017004 CrossRefPubMedGoogle Scholar
  76. Fox SC, Li B, Xu D, Edgar KJ (2011) Regioselective esterification and etherification of cellulose: a review. Biomacromolecules 12:1956–1972.  https://doi.org/10.1021/bm200260d CrossRefPubMedGoogle Scholar
  77. Freire CSR, Silvestre AJD, Pascoal Neto C, Rocha RMA (2005) An efficient method for determination of the degree of substitution of cellulose esters of long chain aliphatic acids. Cellulose 12:449–458.  https://doi.org/10.1007/s10570-005-2203-2 CrossRefGoogle Scholar
  78. Furuhata K, Koganei K, Chang H-S et al (1992) Dissolution of cellulose in lithium bromide-organic solvent systems and homogeneous bromination of cellulose with N-bromosuccinimide-triphenylphosphine in lithium bromide-N,N-dimethylacetamide. Carbohyd Res 230:165–177.  https://doi.org/10.1016/S0008-6215(00)90519-6 CrossRefGoogle Scholar
  79. Gabriel L, Heinze T (2018) Diversity of polysaccharide structures designed by aqueous Ugi-multi-compound reaction. Cellulose 25:2849–2859.  https://doi.org/10.1007/s10570-018-1754-y CrossRefGoogle Scholar
  80. Gagnaire D, Saint-Germain J, Vincendon M (1983) NMR evidence of hydrogen bonds in cellulose solutions. J Appl Polym Sci Appl Polym Symp 37:261–275Google Scholar
  81. Gale E, Wirawan RH, Silveira RL et al (2016) Directed discovery of greener cosolvents: new csolvents for use in ionic liquid based organic electrolyte solutions for cellulose dissolution. ACS Sustain Chem Eng 4:6200–6207.  https://doi.org/10.1021/acssuschemeng.6b02020 CrossRefGoogle Scholar
  82. Geng H (2018) A one-step approach to make cellulose-based hydrogels of various transparency and swelling degrees. Carbohyd Polym 186:208–216.  https://doi.org/10.1016/j.carbpol.2018.01.031 CrossRefGoogle Scholar
  83. Gentile L, Olsson U (2016) Cellulose–solvent interactions from self-diffusion NMR. Cellulose 23:2753–2758.  https://doi.org/10.1007/s10570-016-0984-0 CrossRefGoogle Scholar
  84. Gericke M, Liebert T, Heinze T (2009) Interaction of ionic liquids with polysaccharides, 8—synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromol Biosci 9:343–353.  https://doi.org/10.1002/mabi.200800329 CrossRefPubMedGoogle Scholar
  85. Gericke M, Liebert T, Seoud OAE, Heinze T (2011) Tailored media for homogeneous cellulose chemistry: ionic liquid/co-solvent mixtures. Macromol Mater Eng 296:483–493.  https://doi.org/10.1002/mame.201000330 CrossRefGoogle Scholar
  86. Gericke M, Fardim P, Heinze T (2012a) Ionic liquids—promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502.  https://doi.org/10.3390/molecules17067458 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Gericke M, Schaller J, Liebert T et al (2012b) Studies on the tosylation of cellulose in mixtures of ionic liquids and a co-solvent. Carbohyd Polym 89:526–536.  https://doi.org/10.1016/j.carbpol.2012.03.040 CrossRefGoogle Scholar
  88. Glasser WG (2004) 6. Prospects for future applications of cellulose acetate. Macromol Symp 208:371–394.  https://doi.org/10.1002/masy.200450416 CrossRefGoogle Scholar
  89. Gomez JAC, Erler UW, Klemm DO (1996) 4-methoxy substituted trityl groups in 6-O protection of cellulose: homogeneous synthesis, characterization, detritylation. Macromol Chem Phys 197:953–964.  https://doi.org/10.1002/macp.1996.021970316 CrossRefGoogle Scholar
  90. Gubitosi M, Duarte H, Gentile L et al (2016) On cellulose dissolution and aggregation in aqueous tetrabutylammonium hydroxide. Biomacromolecules 17:2873–2881.  https://doi.org/10.1021/acs.biomac.6b00696 CrossRefPubMedGoogle Scholar
  91. Gupta KM, Jiang J (2015) Cellulose dissolution and regeneration in ionic liquids: a computational perspective. Chem Eng Sci 121:180–189.  https://doi.org/10.1016/j.ces.2014.07.025 CrossRefGoogle Scholar
  92. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576.  https://doi.org/10.1021/cr1003248 CrossRefPubMedGoogle Scholar
  93. Hanabusa H, Izgorodina EI, Suzuki S et al (2018) Cellulose-dissolving protic ionic liquids as low cost catalysts for direct transesterification reactions of cellulose. Green Chem 20:1412–1422.  https://doi.org/10.1039/C7GC03603E CrossRefGoogle Scholar
  94. Heinze T (1998) New ionic polymers by cellulose functionalization. Macromol Chem Phys 199:2341–2364.  https://doi.org/10.1002/(SICI)1521-3935(19981101)199:11%3c2341:AID-MACP2341%3e3.0.CO;2-J CrossRefGoogle Scholar
  95. Heinze T, Liebert T (2012) Celluloses and polyoses/hemicelluloses. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 83–152CrossRefGoogle Scholar
  96. Heinze T, Rahn K (1997) Cellulose-p-toluenesulfonates: a valuable intermediate in cellulose chemistry. Macromol Symp 120:103–113.  https://doi.org/10.1002/masy.19971200112 CrossRefGoogle Scholar
  97. Heinze T, Erler U, Nehls I, Klemm D (1994a) Determination of the substituent pattern of heterogeneously and homogeneously synthesized carboxymethyl cellulose by using high-performance liquid chromatography. Die Angew Makromol Chem 215:93–106.  https://doi.org/10.1002/apmc.1994.052150108 CrossRefGoogle Scholar
  98. Heinze T, Röttig K, Nehls I (1994b) Synthesis of 2,3-O-carboxymethylcellulose. Macromol Rapid Commun 15:311–317.  https://doi.org/10.1002/marc.1994.030150403 CrossRefGoogle Scholar
  99. Heinze T, Rahn K, Jaspers M, Berghmans H (1996) p-Toluenesulfonyl esters in cellulose modifications: acylation of remaining hydroxyl groups. Macromol Chem Phys 197:4207–4224.  https://doi.org/10.1002/macp.1996.021971218 CrossRefGoogle Scholar
  100. Heinze T, Liebert T, Klüfers P, Meister F (1999) Carboxymethylation of cellulose in unconventional media. Cellulose 6:153–165.  https://doi.org/10.1023/A:1009271427760 CrossRefGoogle Scholar
  101. Heinze T, Dicke R, Koschella A et al (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201:627–631.  https://doi.org/10.1002/(SICI)1521-3935(20000301)201:6%3c627:AID-MACP627%3e3.0.CO;2-Y CrossRefGoogle Scholar
  102. Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525.  https://doi.org/10.1002/mabi.200500039 CrossRefPubMedGoogle Scholar
  103. Heinze T, Liebert T, Koschella A (2006) Esterification of polysaccharides. Springer, BerlinGoogle Scholar
  104. Heinze T, Lincke T, Fenn D, Koschella A (2008) Efficient allylation of cellulose in dimethyl sulfoxide/tetrabutylammonium fluoride trihydrate. Polym Bull 61:1–9.  https://doi.org/10.1007/s00289-008-0919-5 CrossRefGoogle Scholar
  105. Heinze T, Seoud OAE, Koschella A (2018a) Principles of cellulose derivatization. In: Cellulose derivatives. Springer, Cham, pp 259–292Google Scholar
  106. Heinze T, Seoud OAE, Koschella A (2018b) Cellulose esters. In: Cellulose derivatives. Springer, Cham, pp 293–427Google Scholar
  107. Heinze T, Seoud OAE, Koschella A (2018c) Cellulose activation and dissolution. In: Cellulose derivatives. Springer, Cham, pp 173–257Google Scholar
  108. Heinze T, Seoud OAE, Koschella A (2018d) Etherification of cellulose. In: Cellulose derivatives. Springer, Cham, pp 429–477Google Scholar
  109. Hinner LP, Wissner JL, Beurer A et al (2016) Homogeneous vinyl ester-based synthesis of different cellulose derivatives in 1-ethyl-3-methyl-imidazolium acetate. Green Chem 18:6099–6107.  https://doi.org/10.1039/C6GC02005D CrossRefGoogle Scholar
  110. Hirrien M, Desbrières J, Rinaudo M (1996) Physical properties of methylcelluloses in relation with the conditions for cellulose modification. Carbohyd Polym 31:243–252.  https://doi.org/10.1016/S0144-8617(96)00118-X CrossRefGoogle Scholar
  111. Hu H, You J, Gan W et al (2015) Synthesis of allyl cellulose in NaOH/urea aqueous solutions and its thiol–ene click reactions. Polym Chem 6:3543–3548.  https://doi.org/10.1039/C5PY00301F CrossRefGoogle Scholar
  112. Huang F-Y (2012) Thermal properties and thermal degradation of cellulose tri-stearate (CTs). Polymers 4:1012–1024.  https://doi.org/10.3390/polym4021012 CrossRefGoogle Scholar
  113. Huang K, Wang B, Cao Y et al (2011a) Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid. J Agric Food Chem 59:5376–5381.  https://doi.org/10.1021/jf104881f CrossRefPubMedGoogle Scholar
  114. Huang K, Xia J, Li M et al (2011b) Homogeneous synthesis of cellulose stearates with different degrees of substitution in ionic liquid 1-butyl-3-methylimidazolium chloride. Carbohyd Polym 83:1631–1635.  https://doi.org/10.1016/j.carbpol.2010.10.020 CrossRefGoogle Scholar
  115. Huang Y-B, Xin P-P, Li J-X et al (2016) Room-temperature dissolution and mechanistic investigation of cellulose in a tetra-butylammonium acetate/dimethyl sulfoxide system. ACS Sustain Chem Eng 4:2286–2294.  https://doi.org/10.1021/acssuschemeng.5b01749 CrossRefGoogle Scholar
  116. Hussain MA, Liebert T, Heinze T (2004) Acylation of cellulose with N,N-carbonyldiimidazole-activated acids in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Macromol Rapid Commun 25:916–920.  https://doi.org/10.1002/marc.200300308 CrossRefGoogle Scholar
  117. Idström A, Gentile L, Gubitosi M et al (2017) On the dissolution of cellulose in tetrabutylammonium acetate/dimethyl sulfoxide: a frustrated solvent. Cellulose 24:3645–3657.  https://doi.org/10.1007/s10570-017-1370-2 CrossRefGoogle Scholar
  118. Ikeda I, Washino K, Maeda Y (2003) Graft polymerization of cyclic compounds on cellulose dissolved in tetrabutylammonium fluoride/dimethyl sulfoxide. Sen’i Gakkaishi 59:110–114.  https://doi.org/10.2115/fiber.59.110 CrossRefGoogle Scholar
  119. Ishii D, Tatsumi D, Matsumoto T (2008) Effect of solvent exchange on the supramolecular structure, the molecular mobility and the dissolution behavior of cellulose in LiCl/DMAc. Carbohyd Res 343:919–928.  https://doi.org/10.1016/j.carres.2008.01.035 CrossRefGoogle Scholar
  120. Isogai A (1997) NMR analysis of cellulose dissolved in aqueous NaOH solutions. Cellulose 4:99–107.  https://doi.org/10.1023/A:1018471419692 CrossRefGoogle Scholar
  121. Isogai A, Ishizu A, Nakano J (1984a) Distribution of substituents in cellulose ethers prepared in aqueous and non-aqueous systems. Sen’i Gakkaishi 40:T504–T511.  https://doi.org/10.2115/fiber.40.12_T504 CrossRefGoogle Scholar
  122. Isogai A, Ishizu A, Nakano J (1984b) Preparation of tri-O-benzylcellulose by the use of nonaqueous cellulose solvents. J Appl Polym Sci 29:2097–2109.  https://doi.org/10.1002/app.1984.070290617 CrossRefGoogle Scholar
  123. Iwata T, Azuma J-I, Okamura K et al (1992) Preparation and n.m.r. assignments of cellulose mixed esters regioselectively substituted by acetyl and propanoyl groups. Carbohyd Res 224:277–283.  https://doi.org/10.1016/0008-6215(92)84113-7 CrossRefGoogle Scholar
  124. Jessop PG, Heldebrant DJ, Li X et al (2005) Green chemistry: reversible nonpolar-to-polar solvent. Nature 436:1102.  https://doi.org/10.1038/4361102a CrossRefPubMedGoogle Scholar
  125. Jogunola O, Eta V, Hedenström M et al (2016) Ionic liquid mediated technology for synthesis of cellulose acetates using different co-solvents. Carbohyd Polym 135:341–348.  https://doi.org/10.1016/j.carbpol.2015.08.092 CrossRefGoogle Scholar
  126. Joly N, Granet R, Branland P et al (2005) New methods for acylation of pure and sawdust-extracted cellulose by fatty acid derivatives—thermal and mechanical analyses of cellulose-based plastic films. J Appl Polym Sci 97:1266–1278.  https://doi.org/10.1002/app.21783 CrossRefGoogle Scholar
  127. Kakibe T, Nakamura S, Mizuta W, Kishi H (2017) Etherification of cellulose in binary ionic liquid as solvent and catalyst. Chem Lett 46:737–739.  https://doi.org/10.1246/cl.170089 CrossRefGoogle Scholar
  128. Kakko T, King AWT, Kilpeläinen I (2017) Homogenous esterification of cellulose pulp in [DBNH][OAc]. Cellulose 24:5341–5354.  https://doi.org/10.1007/s10570-017-1521-5 CrossRefGoogle Scholar
  129. Kamida K, Okajima K, Matsui T, Kowsaka K (1984) Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and 13C NMR. Polym J 16:857–866.  https://doi.org/10.1295/polymj.16.857 CrossRefGoogle Scholar
  130. Kamide K, Okajima K (1981) Determination of distribution of O-acetyl group in trihydric alcohol units of cellulose acetate by carbon-13 nuclear magnetic resonance analysis. Polym J 13:127–133.  https://doi.org/10.1295/polymj.13.127 CrossRefGoogle Scholar
  131. Kamide K, Okajima K, Saito M (1981) Nuclear magnetic resonance study of thermodynamic interaction between cellulose acetate and solvent. Polym J 13:115–125.  https://doi.org/10.1295/polymj.13.115 CrossRefGoogle Scholar
  132. Ke H, Zhou J, Zhang L (2006) Structure and physical properties of methylcellulose synthesized in NaOH/urea solution. Polym Bull 56:349–357.  https://doi.org/10.1007/s00289-006-0507-5 CrossRefGoogle Scholar
  133. Khupse ND, Kumar A (2011) The cosolvent-directed Diels–Alder reaction in ionic liquids. J Phys Chem A 115:10211–10217.  https://doi.org/10.1021/jp205181e CrossRefPubMedGoogle Scholar
  134. Klemm D, Stein A (1995) Silylated cellulose materials in design of supramolecular structures of ultrathin cellulose films. J Macromol Sci Part A 32:899–904.  https://doi.org/10.1080/10601329508010304 CrossRefGoogle Scholar
  135. Klüfers P, Schuhmacher J (1994) Linear coordination polymers of copper(II) and fourfold deprotonated sugar alcohols. Angew Chem Int Ed Engl 33:1742–1744.  https://doi.org/10.1002/anie.199417421 CrossRefGoogle Scholar
  136. Köhler S, Heinze T (2007) New solvents for cellulose: dimethyl sulfoxide/ammonium fluorides. Macromol Biosci 7:307–314.  https://doi.org/10.1002/mabi.200600197 CrossRefPubMedGoogle Scholar
  137. Köhler S, Liebert T, Schöbitz M et al (2007) Interactions of ionic liquids with polysaccharides 1. Unexpected acetylation of cellulose with 1-ethyl-3-methylimidazolium acetate. Macromol Rapid Commun 28:2311–2317.  https://doi.org/10.1002/marc.200700529 CrossRefGoogle Scholar
  138. Köhler S, Liebert T, Heinze T (2008) Interactions of ionic liquids with polysaccharides. VI. Pure cellulose nanoparticles from trimethylsilyl cellulose synthesized in ionic liquids. J Polym Sci Part A Polym Chem 46:4070–4080.  https://doi.org/10.1002/pola.22749 CrossRefGoogle Scholar
  139. Köhler S, Liebert T, Heinze T (2009) Ammonium-based cellulose solvents suitable for homogeneous etherification. Macromol Biosci 9:836–841.  https://doi.org/10.1002/mabi.200900156 CrossRefPubMedGoogle Scholar
  140. Köhler S, Liebert T, Heinze T et al (2010) Interactions of ionic liquids with polysaccharides 9. Hydroxyalkylation of cellulose without additional inorganic bases. Cellulose 17:437–448.  https://doi.org/10.1007/s10570-009-9379-9 CrossRefGoogle Scholar
  141. Kondo T, Gray DG (1991) The preparation of O-methyl- and O-ethyl-celluloses having controlled distribution of substituents. Carbohyd Res 220:173–183.  https://doi.org/10.1016/0008-6215(91)80015-F CrossRefGoogle Scholar
  142. Kontturi EJ, Thuene PC, Niemantsverdriet JW (2003) Cellulose model surfaces—simplified preparation by spin coating and characterization by X-ray photoelectron spectroscopy, infrared spectroscopy, and atomic force microscopy. Langmuir 19:5735–5741.  https://doi.org/10.1021/la0340394 CrossRefGoogle Scholar
  143. Kosan B, Dorn S, Meister F, Heinze T (2010) Preparation and subsequent shaping of cellulose acetates using ionic liquids. Macromol Mater Eng 295:676–681.  https://doi.org/10.1002/mame.201000022 CrossRefGoogle Scholar
  144. Koschella A, Klemm D (1997) Silylation of cellulose regiocontrolled by bulky reagents and dispersity in the reaction media. Macromol Symp 120:115–125.  https://doi.org/10.1002/masy.19971200113 CrossRefGoogle Scholar
  145. Koschella A, Heinze T, Klemm D (2001) First synthesis of 3-O-functionalized cellulose ethers via 2,6-di-O-protected silyl cellulose. Macromol Biosci 1:49–54.  https://doi.org/10.1002/1616-5195(200101)1:1%3c49:AID-MABI49%3e3.0.CO;2-C CrossRefGoogle Scholar
  146. Kostag M, Köhler S, Liebert T, Heinze T (2010) Pure cellulose nanoparticles from trimethylsilyl cellulose. Macromol Symp 294:96–106.  https://doi.org/10.1002/masy.200900095 CrossRefGoogle Scholar
  147. Kostag M, Liebert T, El Seoud OA, Heinze T (2013) Efficient cellulose solvent: quaternary ammonium chlorides. Macromol Rapid Commun 34:1580–1584.  https://doi.org/10.1002/marc.201300497 CrossRefPubMedGoogle Scholar
  148. Kostag M, Jedvert K, Achtel C et al (2018) Recent advances in solvents for the dissolution, shaping and derivatization of cellulose: quaternary ammonium electrolytes and their solutions in water and molecular solvents. Molecules 23:511.  https://doi.org/10.3390/molecules23030511 CrossRefPubMedCentralGoogle Scholar
  149. Kuzmina O, Sashina ES, Troshenkowa S, Wawro D (2010) Dissolved state of cellulose in ionic liquids—the impact of water. Fibers Text Eastern Eur 18:32–37Google Scholar
  150. Kwak SH, Gong Y-D (2013) Unexpected route for the synthesis of N,N-dialkyl formamidines using phenyl chloroformate and N,N-dialkyl formamides. Tetrahedron 69:7107–7111.  https://doi.org/10.1016/j.tet.2013.06.026 CrossRefGoogle Scholar
  151. Kwolek SL, Morgan PW, Schaefgen JR, Gulrich LW (1977) Synthesis, anisotropic solutions, and fibers of poly(1,4-benzamide). Macromolecules 10:1390–1396.  https://doi.org/10.1021/ma60060a041 CrossRefGoogle Scholar
  152. Law RC (2004) 5. Applications of cellulose acetate 5.1 Cellulose acetate in textile application. Macromol Symp 208:255–266.  https://doi.org/10.1002/masy.200450410 CrossRefGoogle Scholar
  153. Letters K (1932) Viskosimetrische Untersuchungen über die Reaktion von Zellulose mit konzentrierten Chlorzinklösungen. Kolloid-Zeitschrift 58:229–239.  https://doi.org/10.1007/BF01460731 CrossRefGoogle Scholar
  154. Lewis WG, Green LG, Grynszpan F et al (2002) Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew Chem Int Ed 41:1053–1057.  https://doi.org/10.1002/1521-3773(20020315)41:6%3c1053:AID-ANIE1053%3e3.0.CO;2-4 CrossRefGoogle Scholar
  155. Li WY, Jin AX, Liu CF et al (2009) Homogeneous modification of cellulose with succinic anhydride in ionic liquid using 4-dimethylaminopyridine as a catalyst. Carbohyd Polym 78:389–395.  https://doi.org/10.1016/j.carbpol.2009.04.028 CrossRefGoogle Scholar
  156. Li M-F, Sun S-N, Xu F, Sun R-C (2011a) Cold NaOH/urea aqueous dissolved cellulose for benzylation: synthesis and characterization. Eur Polym J 47:1817–1826.  https://doi.org/10.1016/j.eurpolymj.2011.06.013 CrossRefGoogle Scholar
  157. Li W, Wu L, Chen D et al (2011b) DMAP-catalyzed phthalylation of cellulose with phthalic anhydride in [BMIM]Cl. BioResources 6:2375–2385.  https://doi.org/10.15376/biores.6.3.2375-2385 CrossRefGoogle Scholar
  158. Li Y, Wang J, Liu X, Zhang S (2018) Towards a molecular understanding of cellulose dissolution in ionic liquids: anion/cation effect, synergistic mechanism and physicochemical aspects. Chem Sci 9:4027–4043.  https://doi.org/10.1039/C7SC05392D CrossRefPubMedPubMedCentralGoogle Scholar
  159. Liebert T, Heinze T (1998) Induced phase separation: a new synthesis concept in cellulose chemistry. In: Heinze TJ, Glasser WG (eds) Cellulose derivatives. American Chemical Society, pp 61–72.  https://doi.org/10.1021/bk-1998-0688.ch004
  160. Liebert TF, Heinze T (2005) Tailored cellulose esters: synthesis and structure determination. Biomacromolecules 6:333–340.  https://doi.org/10.1021/bm049532o CrossRefPubMedGoogle Scholar
  161. Liebert T, Kostag M, Wotschadlo J, Heinze T (2011) Stable cellulose nanospheres for cellular uptake. Macromol Biosci 11:1387–1392.  https://doi.org/10.1002/mabi.201100113 CrossRefPubMedGoogle Scholar
  162. Liebner F, Patel I, Ebner G et al (2010) Thermal aging of 1-alkyl-3-methylimidazolium ionic liquids and its effect on dissolved cellulose. Holzforschung 64:161–166.  https://doi.org/10.1515/hf.2010.033 CrossRefGoogle Scholar
  163. Lilienfeld L (1924) Manufacture of cellulose solutions, US1460A German Patent Application No. 443095 C, 16 April 1927Google Scholar
  164. Lin L, Yamaguchi H, Tsuchii K (2015) Solvent used for dissolving polysaccharide and method for manufacturing molded article and polysaccharide derivative using this solvent, EP 2 690 132 A1Google Scholar
  165. Lindman B, Medronho B, Alves L et al (2017) The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena. Phys Chem Chem Phys 19:23704–23718.  https://doi.org/10.1039/C7CP02409F CrossRefPubMedGoogle Scholar
  166. Liu C, Baumann H (2002) Exclusive and complete introduction of amino groups and their N-sulfo and N-carboxymethyl groups into the 6-position of cellulose without the use of protecting groups. Carbohyd Res 337:1297–1307.  https://doi.org/10.1016/S0008-6215(02)00132-5 CrossRefGoogle Scholar
  167. Liu S, Zhang L (2009) Effects of polymer concentration and coagulation temperature on the properties of regenerated cellulose films prepared from LiOH/urea solution. Cellulose 16:189–198.  https://doi.org/10.1007/s10570-008-9268-7 CrossRefGoogle Scholar
  168. Liu CF, Sun RC, Zhang AP et al (2006) Structural and thermal characterization of sugarcane bagasse cellulose succinates prepared in ionic liquid. Polym Degrad Stab 91:3040–3047.  https://doi.org/10.1016/j.polymdegradstab.2006.08.004 CrossRefGoogle Scholar
  169. Liu CF, Sun RC, Zhang AP et al (2007) Homogeneous modification of sugarcane bagasse cellulose with succinic anhydride using a ionic liquid as reaction medium. Carbohyd Res 342:919–926.  https://doi.org/10.1016/j.carres.2007.02.006 CrossRefGoogle Scholar
  170. Liu CF, Zhang AP, Li WY et al (2010) Succinoylation of cellulose catalyzed with iodine in ionic liquid. Ind Crops Prod 31:363–369.  https://doi.org/10.1016/j.indcrop.2009.12.002 CrossRefGoogle Scholar
  171. Liu H, Wang A, Xu X et al (2016a) Porous aerogels prepared by crosslinking of cellulose with 1,4-butanediol diglycidyl ether in NaOH/urea solution. RSC Adv 6:42854–42862.  https://doi.org/10.1039/C6RA07464B CrossRefGoogle Scholar
  172. Liu X, Zhang T, Pang K et al (2016b) Graphene oxide/cellulose composite films with enhanced UV-shielding and mechanical properties prepared in NaOH/urea aqueous solution. RSC Adv 6:73358–73364.  https://doi.org/10.1039/C6RA16535D CrossRefGoogle Scholar
  173. Lu F, Ralph J (2003) Non-degradative dissolution and acetylation of ball-milled plant cell walls: high-resolution solution-state NMR. Plant J 35:535–544.  https://doi.org/10.1046/j.1365-313X.2003.01817.x CrossRefPubMedGoogle Scholar
  174. Luan Y, Zhang J, Zhan M et al (2013) Highly efficient propionylation and butyralation of cellulose in an ionic liquid catalyzed by 4-dimethylminopyridine. Carbohyd Polym 92:307–311.  https://doi.org/10.1016/j.carbpol.2012.08.111 CrossRefGoogle Scholar
  175. Luo X, Zhang L (2013) New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Res Int 52:387–400.  https://doi.org/10.1016/j.foodres.2010.05.016 CrossRefGoogle Scholar
  176. Lv Y, Wu J, Zhang J et al (2012) Rheological properties of cellulose/ionic liquid/dimethylsulfoxide (DMSO) solutions. Polymer 53:2524–2531.  https://doi.org/10.1016/j.polymer.2012.03.037 CrossRefGoogle Scholar
  177. Lv Y, Chen Y, Shao Z et al (2015) Homogeneous tritylation of cellulose in 1-allyl-3-methylimidazolium chloride and subsequent acetylation: the influence of base. Carbohyd Polym 117:818–824.  https://doi.org/10.1016/j.carbpol.2014.10.041 CrossRefGoogle Scholar
  178. Marson GA, Seoud OAE (1999) A novel, efficient procedure for acylation of cellulose under homogeneous solution conditions. J Appl Polym Sci 74:1355–1360.  https://doi.org/10.1002/(SICI)1097-4628(19991107)74:6%3c1355:AID-APP5%3e3.0.CO;2-M CrossRefGoogle Scholar
  179. McCormick CL, Callais PA (1987) Derivatization of cellulose in lithium chloride and N,N-dimethylacetamide solutions. Polymer 28:2317–2323.  https://doi.org/10.1016/0032-3861(87)90393-4 CrossRefGoogle Scholar
  180. McCormick CL, Callais PA, Hutchinson BH (1985) Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules 18:2394–2401.  https://doi.org/10.1021/ma00154a010 CrossRefGoogle Scholar
  181. McCormick CL, Dawsey TR, Newman JK (1990) Competitive formation of cellulose p-toluenesulfonate and chlorodeoxycellulose during homogeneous reaction of p-toluenesulfonyl chloride with cellulose in N,N-dimethylacetamide-lithium chloride. Carbohyd Res 208:183–191.  https://doi.org/10.1016/0008-6215(90)80098-N CrossRefGoogle Scholar
  182. Medronho B, Duarte H, Alves L et al (2016) The role of cyclodextrin-tetrabutylammonium complexation on the cellulose dissolution. Carbohyd Polym 140:136–143.  https://doi.org/10.1016/j.carbpol.2015.12.026 CrossRefGoogle Scholar
  183. Medronho B, Duarte H, Magalhães S et al (2017) From a new cellulose solvent to the cyclodextrin induced formation of hydrogels. Colloids Surf A 532:548–555.  https://doi.org/10.1016/j.colsurfa.2017.03.047 CrossRefGoogle Scholar
  184. Meng X, Devemy J, Verney V et al (2017) Improving cellulose dissolution in ionic liquids by tuning the size of the Ions: impact of the length of the alkyl chains in tetraalkylammonium carboxylate. Chemsuschem 10:1749–1760.  https://doi.org/10.1002/cssc.201601830 CrossRefPubMedGoogle Scholar
  185. Miyamoto H, Umemura M, Aoyagi T et al (2009) Structural reorganization of molecular sheets derived from cellulose II by molecular dynamics simulations. Carbohyd Res 344:1085–1094.  https://doi.org/10.1016/j.carres.2009.03.014 CrossRefGoogle Scholar
  186. Moellmann E, Heinze T, Liebert T, Koehler S (2013) Homogeneous synthesis of cellulose ethers in ionic liquids US 2009/0221813 A1 1813A1Google Scholar
  187. Morgan PW (1977) Synthesis and properties of aromatic and extended chain polyamides. Macromolecules 10:1381–1390.  https://doi.org/10.1021/ma60060a040 CrossRefGoogle Scholar
  188. Morgenstern B, Berger W (1993) Investigations about dissolution of cellulose in the LiCl/N,N-dimethylformamide system. Acta Polym 44:100–102.  https://doi.org/10.1002/actp.1993.010440208 CrossRefGoogle Scholar
  189. Morgenstern B, Kammer H-W (1999) On the particulate structure of cellulose solutions. Polymer 40:1299–1304.  https://doi.org/10.1016/S0032-3861(98)00267-5 CrossRefGoogle Scholar
  190. Morgenstern B, Kammer HW, Berger W, Skrabal P (1992) 7Li-NMR study on cellulose/LiCl/N,N-dimethylacetamide solutions. Acta Polym 43:356–357.  https://doi.org/10.1002/actp.1992.010430612 CrossRefGoogle Scholar
  191. Mormann W, Wezstein M (2009) Trimethylsilylation of cellulose in ionic liquids. Macromol Biosci 9:369–375.  https://doi.org/10.1002/mabi.200800192 CrossRefPubMedGoogle Scholar
  192. Nawaz H, Pires PAR, El Seoud OA (2013) Kinetics and mechanism of imidazole-catalyzed acylation of cellulose in LiCl/N,N-dimethylacetamide. Carbohyd Polym 92:997–1005.  https://doi.org/10.1016/j.carbpol.2012.10.009 CrossRefGoogle Scholar
  193. Nawaz H, Pires PAR, Arêas EPG et al (2015) Probing cellulose acetylation in binary mixtures of an ionic liquid with dimethylsulfoxide and sulfolane by chemical kinetics, viscometry, spectroscopy, and molecular dynamics simulations. Macromol Chem Phys 216:2368–2376.  https://doi.org/10.1002/macp.201500315 CrossRefGoogle Scholar
  194. Nguyen QV, Nomura S, Hoshino R et al (2017) Recyclable and scalable organocatalytic transesterification of polysaccharides in a mixed solvent of 1-ethyl-3-methylimidazolium acetate and dimethyl sulfoxide. Polym J 49:783–787.  https://doi.org/10.1038/pj.2017.49 CrossRefGoogle Scholar
  195. Olsson C, Westman G (2017) Co-solvent facilitated in situ esterification of cellulose in 1-ethyl-3-methylimidazolium acetate. BioResources 12:1395–1402.  https://doi.org/10.15376/biores.12.1.1395-1402 CrossRefGoogle Scholar
  196. Östlund Å, Lundberg D, Nordstierna L et al (2009) Dissolution and gelation of cellulose in TBAF/DMSO solutions: the roles of fluoride ions and water. Biomacromolecules 10:2401–2407.  https://doi.org/10.1021/bm900667q CrossRefPubMedGoogle Scholar
  197. Otera J (1993) Transesterification. Chem Rev 93:1449–1470.  https://doi.org/10.1021/cr00020a004 CrossRefGoogle Scholar
  198. Papanyan Z, Roth C, Wittler K et al (2013) The dissolution of polyols in salt solutions and ionic liquids at molecular level: ions, counter ions, and hofmeister effects. ChemPhysChem 14:3667–3671.  https://doi.org/10.1002/cphc.201300465 CrossRefPubMedGoogle Scholar
  199. Parthasarathi R, Bellesia G, Chundawat SPS et al (2011) Insights into hydrogen bonding and stacking interactions in cellulose. J Phys Chem A 115:14191–14202.  https://doi.org/10.1021/jp203620x CrossRefPubMedGoogle Scholar
  200. Parviainen A, King AWT, Mutikainen I et al (2013) Predicting cellulose solvating capabilities of acid–base conjugate ionic liquids. Chemsuschem 6:2161–2169.  https://doi.org/10.1002/cssc.201300143 CrossRefPubMedGoogle Scholar
  201. Peng N, Wang Y, Ye Q et al (2016) Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohyd Polym 137:59–64.  https://doi.org/10.1016/j.carbpol.2015.10.057 CrossRefGoogle Scholar
  202. Petruš L, Gray DG, BeMiller JN (1995) Homogeneous alkylation of cellulose in lithium chloride/dimethyl sulfoxide solvent with dimsyl sodium activation. A proposal for the mechanism of cellulose dissolution in LiCl/Me2SO. Carbohyd Res 268:319–323.  https://doi.org/10.1016/0008-6215(94)00330-I CrossRefGoogle Scholar
  203. Peydecastaing J, Vaca-Garcia C, Borredon E (2008a) Accurate determination of the degree of substitution of long chain cellulose esters. Cellulose 16:289.  https://doi.org/10.1007/s10570-008-9267-8 CrossRefGoogle Scholar
  204. Peydecastaing J, Vaca-Garcia C, Borredon E (2008b) Quantitative analysis of mixtures of various linear anhydrides and carboxylic acids. Chroma 68:685–688.  https://doi.org/10.1365/s10337-008-0765-5 CrossRefGoogle Scholar
  205. Peydecastaing J, Vaca-Garcia C, Borredon E (2009) Consecutive reactions in an oleic acid and acetic anhydride reaction medium. Eur J Lipid Sci Technol 111:723–729.  https://doi.org/10.1002/ejlt.200800189 CrossRefGoogle Scholar
  206. Pinkert A, Marsh KN, Pang S (2010) Reflections on the solubility of cellulose. Ind Eng Chem Res 49:11121–11130.  https://doi.org/10.1021/ie1006596 CrossRefGoogle Scholar
  207. Plechkova NV, Rogers RD, Seddon KR (2009) Ionic liquids: from knowledge to application. In: Ionic liquids: from knowledge to application. American Chemical Society, WashingtonGoogle Scholar
  208. Possidonio S, Fidale LC, Seoud OAE (2010) Microwave-assisted derivatization of cellulose in an ionic liquid: an efficient, expedient synthesis of simple and mixed carboxylic esters. J Polym Sci Part A Polym Chem 48:134–143.  https://doi.org/10.1002/pola.23770 CrossRefGoogle Scholar
  209. Potthast A, Rosenau T, Buchner R et al (2002) The cellulose solvent system N,N-dimethylacetamide/lithium chloride revisited: the effect of water on physicochemical properties and chemical stability. Cellulose 9:41–53.  https://doi.org/10.1023/A:1015811712657 CrossRefGoogle Scholar
  210. Potthast A, Rosenau T, Sartori J et al (2003) Hydrolytic processes and condensation reactions in the cellulose solvent system N,N-dimethylacetamide/lithium chloride. Part 2: degradation of cellulose. Polymer 44:7–17.  https://doi.org/10.1016/S0032-3861(02)00751-6 CrossRefGoogle Scholar
  211. Potthast A, Radosta S, Saake B et al (2015) Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose 22:1591–1613.  https://doi.org/10.1007/s10570-015-0586-2 CrossRefGoogle Scholar
  212. Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15:779–787.  https://doi.org/10.1007/s10570-008-9230-8 CrossRefGoogle Scholar
  213. Qi H, Liebert T, Meister F, Heinze T (2009) Homogeneous carboxymethylation of cellulose in the NaOH/urea aqueous solution. React Funct Polym 69:779–784.  https://doi.org/10.1016/j.reactfunctpolym.2009.06.007 CrossRefGoogle Scholar
  214. Qi H, Liebert T, Meister F et al (2010) Homogeneous carboxymethylation of cellulose in the new alkaline solvent LiOH/urea aqueous solution. Macromol Symp 294:125–132.  https://doi.org/10.1002/masy.200900166 CrossRefGoogle Scholar
  215. Rahn K, Diamantoglou M, Klemm D et al (1996) Homogeneous synthesis of cellulose p-toluenesulfonates in N,N-dimethylacetamide/LiCl solvent system. Die Angew Makromol Chem 238:143–163.  https://doi.org/10.1002/apmc.1996.052380113 CrossRefGoogle Scholar
  216. Ramos LA, Frollini E, Heinze T (2005a) Carboxymethylation of cellulose in the new solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Carbohyd Polym 60:259–267.  https://doi.org/10.1016/j.carbpol.2005.01.010 CrossRefGoogle Scholar
  217. Ramos LA, Frollini E, Koschella A, Heinze T (2005b) Benzylation of cellulose in the solvent dimethylsulfoxide/tetrabutylammonium fluoride trihydrate. Cellulose 12:607–619.  https://doi.org/10.1007/s10570-005-9007-2 CrossRefGoogle Scholar
  218. Ramos LA, Morgado DL, El Seoud OA et al (2011) Acetylation of cellulose in LiCl-N,N-dimethylacetamide: first report on the correlation between the reaction efficiency and the aggregation number of dissolved cellulose. Cellulose 18:385–392.  https://doi.org/10.1007/s10570-011-9496-0 CrossRefGoogle Scholar
  219. Ratanakamnuan U, Atong D, Aht-Ong D (2012) Cellulose esters from waste cotton fabric via conventional and microwave heating. Carbohyd Polym 87:84–94.  https://doi.org/10.1016/j.carbpol.2011.07.016 CrossRefGoogle Scholar
  220. Rebière J, Rouilly A, Durrieu V et al (2017) Characterization of non-derivatized cellulose samples by size exclusion chromatography in tetrabutylammonium fluoride/dimethylsulfoxide (TBAF/DMSO). Molecules 22:1985.  https://doi.org/10.3390/molecules22111985 CrossRefPubMedCentralGoogle Scholar
  221. Regiani AM, Frollini E, Marson GA et al (1999) Some aspects of acylation of cellulose under homogeneous solution conditions. J Polym Sci Part A Polym Chem 37:1357–1363.  https://doi.org/10.1002/(SICI)1099-0518(19990501)37:9%3c1357:AID-POLA16%3e3.0.CO;2-Y CrossRefGoogle Scholar
  222. Reichardt C, Welton T (2010) Empirical parameters of solvent polarity. In: Solvents and solvent effects in organic chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 425–508Google Scholar
  223. Rein DM, Khalfin R, Szekely N, Cohen Y (2014) True molecular solutions of natural cellulose in the binary ionic liquid-containing solvent mixtures. Carbohyd Polym 112:125–133.  https://doi.org/10.1016/j.carbpol.2014.05.059 CrossRefGoogle Scholar
  224. Rinaudo M (1993) Polysaccharide characterization in relation with some original properties. J Appl Polym Sci Appl Polym Symp 52:11–17CrossRefGoogle Scholar
  225. Röder T, Morgenstern B, Schelosky N, Glatter O (2001) Solutions of cellulose in N,N-dimethylacetamide/lithium chloride studied by light scattering methods. Polymer 42:6765–6773.  https://doi.org/10.1016/S0032-3861(01)00170-7 CrossRefGoogle Scholar
  226. Rodríguez H, Gurau G, Holbrey JD, Rogers RD (2011) Reaction of elemental chalcogens with imidazolium acetates to yield imidazole-2-chalcogenones: direct evidence for ionic liquids as proto-carbenes. Chem Commun 47:3222–3224.  https://doi.org/10.1039/C0CC05223J CrossRefGoogle Scholar
  227. Rosenau T, Potthast A, Hofinger A et al (2001) Hydrolytic processes and condensation Reactions in the cellulose solvent system N,N-dimethylacetamide/lithium chloride. Part 1. Holzforschung 55:661–666.  https://doi.org/10.1515/HF.2001.107 CrossRefGoogle Scholar
  228. Rosenau T, Potthast A, Kosma P (2006) Trapping of reactive intermediates to study reaction mechanisms in cellulose chemistry. In: Klemm D (ed) Polysaccharides II. Springer, Berlin Heidelberg, pp 153–197CrossRefGoogle Scholar
  229. Ruan D, Lue A, Zhang L (2008) Gelation behaviors of cellulose solution dissolved in aqueous NaOH/thiourea at low temperature. Polymer 49:1027–1036.  https://doi.org/10.1016/j.polymer.2007.12.044 CrossRefGoogle Scholar
  230. Saalwächter K, Burchard W, Klüfers P et al (2000) Cellulose solutions in water containing metal complexes. Macromolecules 33:4094–4107.  https://doi.org/10.1021/ma991893m CrossRefGoogle Scholar
  231. Saric SP, Schofield RK (1946) The dissociation constants of the carboxyl and hydroxyl groups in some insoluble and sol-forming polysaccharides. Proc R Soc Lond A 185:431–447.  https://doi.org/10.1098/rspa.1946.0029 CrossRefGoogle Scholar
  232. Sashina ES, Kashirskii DA (2015) Pyridinium-based ionic liquids—application for cellulose processing. Ionic Liquids—Current State of the Art 389–417.  https://doi.org/10.5772/59286
  233. Schenzel A, Hufendiek A, Barner-Kowollik C, Meier MAR (2014) Catalytic transesterification of cellulose in ionic liquids: sustainable access to cellulose esters. Green Chem 16:3266–3271.  https://doi.org/10.1039/C4GC00312H CrossRefGoogle Scholar
  234. Schneider S, Linse P (2002) Swelling of cross-linked polyelectrolyte gels. Eur Phys J E 8:457–460.  https://doi.org/10.1140/epje/i2002-10043-y CrossRefPubMedGoogle Scholar
  235. Schneider S, Linse P (2003) Monte Carlo simulation of defect-free cross-linked polyelectrolyte gels. J Phys Chem B 107:8030–8040.  https://doi.org/10.1021/jp022336w CrossRefGoogle Scholar
  236. Schult T, Hjerde T, Inge Optun O et al (2002) Characterization of cellulose by SEC-MALLS. Cellulose 9:149–158.  https://doi.org/10.1023/A:1020139409903 CrossRefGoogle Scholar
  237. Sealey JE, Samaranayake G, Todd JG, Glasser WG (1996) Novel cellulose derivatives. IV. Preparation and thermal analysis of waxy esters of cellulose. J Polym Sci Part B Polym Phys 34:1613–1620.  https://doi.org/10.1002/(SICI)1099-0488(19960715)34:9%3c1613:AID-POLB10%3e3.0.CO;2-A CrossRefGoogle Scholar
  238. Sharma RK, Fry JL (1983) Instability of anhydrous tetra-n-alkylammonium fluorides. J Org Chem 48:2112–2114.  https://doi.org/10.1021/jo00160a041 CrossRefGoogle Scholar
  239. Shulepov ID, Kozhikhova KV, Panfilova YS et al (2016) One-pot synthesis of cross-linked sub-micron microgels from pure cellulose via the Ugi reaction and their application as emulsifiers. Cellulose 23:2549–2559.  https://doi.org/10.1007/s10570-016-0957-3 CrossRefGoogle Scholar
  240. Singh RK, Gupta P, Sharma OP, Ray SS (2015) Homogeneous synthesis of cellulose fatty esters in ionic liquid (1-butyl-3-methylimidazolium chloride) and study of their comparative antifriction property. J Ind Eng Chem 24:14–19.  https://doi.org/10.1016/j.jiec.2014.09.031 CrossRefGoogle Scholar
  241. Sjöholm E, Gustafsson K, Pettersson B, Colmsjö A (1997) Characterization of the cellulosic residues from lithium chloride/N,N-dimethylacetamide dissolution of softwood kraft pulp. Carbohyd Polym 32:57–63.  https://doi.org/10.1016/S0144-8617(96)00129-4 CrossRefGoogle Scholar
  242. Song Y, Sun Y, Zhang X et al (2008a) Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 9:2259–2264.  https://doi.org/10.1021/bm800429a CrossRefPubMedGoogle Scholar
  243. Song Y, Zhou J, Zhang L, Wu X (2008b) Homogeneous modification of cellulose with acrylamide in NaOH/urea aqueous solutions. Carbohyd Polym 73:18–25.  https://doi.org/10.1016/j.carbpol.2007.10.018 CrossRefGoogle Scholar
  244. Song J, He A, Jin Y, Cheng Q (2013) Synthesis of amphoteric cellulose in aqueous NaOH–urea solution in one pot and its application in paper strength enhancement. RSC Advances 3:24586–24592.  https://doi.org/10.1039/C3RA44628J CrossRefGoogle Scholar
  245. Söyler Z, Onwukamike KN, Grelier S et al (2018) Sustainable succinylation of cellulose in a CO2-based switchable solvent and subsequent Passerini 3-CR and Ugi 4-CR modification. Green Chem 20:214–224.  https://doi.org/10.1039/C7GC02577G CrossRefGoogle Scholar
  246. Spange S, Reuter A, Vilsmeier E et al (1998) Determination of empirical polarity parameters of the cellulose solvent N,N-dimethylacetamide/LiCl by means of the solvatochromic technique. J Polym Sci Part A Polym Chem 36:1945–1955.  https://doi.org/10.1002/(SICI)1099-0518(199808)36:11%3c1945:AID-POLA30%3e3.0.CO;2-C CrossRefGoogle Scholar
  247. Steinmeier H (2004) 3. Acetate manufacturing, process and technology 3.1 Chemistry of cellulose acetylation. Macromolecular Symposia 208:49–60.  https://doi.org/10.1002/masy.200450405 CrossRefGoogle Scholar
  248. Stolarska O, Pawlowska-Zygarowicz A, Soto A et al (2017) Mixtures of ionic liquids as more efficient media for cellulose dissolution. Carbohyd Polym 178:277–285.  https://doi.org/10.1016/j.carbpol.2017.09.025 CrossRefGoogle Scholar
  249. Striegel AM (2003) Advances in the understanding of the dissolution mechanism of cellulose in DMAc/LiCl. J Chil Chem Soc 48:73–77.  https://doi.org/10.4067/S0717-97072003000100013 CrossRefGoogle Scholar
  250. Striegel AM, Timpa JD (1996) Size exclusion chromatography of polysaccharides in dimethylacetamide-lithium chloride. In: Potschka M, Dubin PL (eds) Strategies in size exclusion chromatography. American Chemical Society, pp 366–378 Google Scholar
  251. Strlič M, Kolar J (2003) Size exclusion chromatography of cellulose in LiCl/N,N-dimethylacetamide. J Biochem Biophys Methods 56:265–279.  https://doi.org/10.1016/S0165-022X(03)00064-2 CrossRefPubMedGoogle Scholar
  252. Sun H, DiMagno SG (2005) Anhydrous tetrabutylammonium fluoride. J Am Chem Soc 127:2050–2051.  https://doi.org/10.1021/ja0440497 CrossRefPubMedGoogle Scholar
  253. Takahashi S-I, Fujimoto T, Barua BM et al (1986) 13C-NMR spectral studies on the distribution of substituents in some cellulose derivatives. J Polym Sci Part A Polym Chem 24:2981–2993.  https://doi.org/10.1002/pola.1986.080241125 CrossRefGoogle Scholar
  254. Tammelin T, Saarinen T, Österberg M, Laine J (2006) Preparation of Langmuir/Blodgett-cellulose surfaces by using horizontal dipping procedure. Application for polyelectrolyte adsorption studies performed with QCM-D. Cellulose 13:519.  https://doi.org/10.1007/s10570-005-9002-7 CrossRefGoogle Scholar
  255. Tarasova E, Šumigin D, Kudrjašova M, Krumme A (2013) Preparation of cellulose stearate and cellulose acetate stearate in 1-butyl-3-methylimidazolium chloride. Key Eng Mater 559:105–110.  https://doi.org/10.4028/www.scientific.net/KEM.559.105 CrossRefGoogle Scholar
  256. Thomas R (1970) New process for the partial esterification of cellulose with carboxylic acids under practice conditions. Textilveredlung 5:361–368Google Scholar
  257. Thota N, Mukherjee D, Reddy MV et al (2009) Reaction of carbohydrates with Vilsmeier reagent: a tandem selective chloro O-formylation of sugars. Org Biomol Chem 7:1280–1283.  https://doi.org/10.1039/B900026G CrossRefPubMedGoogle Scholar
  258. Tiller J, Berlin P, Klemm D (2000) Novel matrices for biosensor applications by structural design of redox-chromogenic aminocellulose esters. J Appl Polym Sci 75:904–915.  https://doi.org/10.1002/(SICI)1097-4628(20000214)75:7%3c904:AID-APP7%3e3.0.CO;2-8 CrossRefGoogle Scholar
  259. Tiwari S, Kumar A (2012) Viscosity dependence of intra- and intermolecular Diels–Alder reactions. J Phys Chem A 116:1191–1198.  https://doi.org/10.1021/jp208989z CrossRefPubMedGoogle Scholar
  260. Trulove PC, Reichert WM, Long HCD et al (2009) The structure and dynamics of silk and cellulose dissolved in ionic liquids. ECS Trans 16:111–117.  https://doi.org/10.1149/1.3159315 CrossRefGoogle Scholar
  261. Vaca-Garcia C, Borredon ME (1999) Solvent-free fatty acylation of cellulose and lignocellulosic wastes. Part 2: reactions with fatty acids. Biores Technol 70:135–142.  https://doi.org/10.1016/S0960-8524(99)00034-6 CrossRefGoogle Scholar
  262. Vaca-Garcia C, Thiebaud S, Borredon ME, Gozzelino G (1998) Cellulose esterification with fatty acids and acetic anhydride in lithium chloride/N,N-dimethylacetamide medium. J Am Oil Chem Soc 75:315–319.  https://doi.org/10.1007/s11746-998-0047-2 CrossRefGoogle Scholar
  263. van Osch DJGP, Kollau LJBM, van den Bruinhorst A et al (2017) Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation. Phys Chem Chem Phys 19:2636–2665.  https://doi.org/10.1039/c6cp07499e CrossRefPubMedGoogle Scholar
  264. Vasudevan V, Mushrif SH (2015) Insights into the solvation of glucose in water, dimethyl sulfoxide (DMSO), tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) and its possible implications on the conversion of glucose to platform chemicals. RSC Adv 5:20756–20763.  https://doi.org/10.1039/C4RA15123B CrossRefGoogle Scholar
  265. Wang Z, Yokoyama T, Chang H, Matsumoto Y (2009) Dissolution of beech and spruce milled woods in LiCl/DMSO. J Agric Food Chem 57:6167–6170.  https://doi.org/10.1021/jf900441q CrossRefPubMedGoogle Scholar
  266. Wang H-H, Zhang X-Q, Long P et al (2016) Reaction behavior of cellulose in the homogeneous esterification of bagasse modified with phthalic anhydride in ionic liquid 1-allyl-3-methylimidazium chloride. Int J Polym Sci.  https://doi.org/10.1155/2016/2361284 CrossRefGoogle Scholar
  267. Wang B, Qin L, Mu T et al (2017) Are ionic liquids chemically stable? Chem Rev 117:7113–7131.  https://doi.org/10.1021/acs.chemrev.6b00594 CrossRefPubMedGoogle Scholar
  268. Wang Y, Liu L, Chen P et al (2018) Cationic hydrophobicity promotes dissolution of cellulose in aqueous basic solution by freezing–thawing. Phys Chem Chem Phys 20:14223–14233.  https://doi.org/10.1039/C8CP01268G CrossRefPubMedGoogle Scholar
  269. Wei Y, Cheng F (2007) Effect of solvent exchange on the structure and rheological properties of cellulose in LiCl/DMAc. J Appl Polym Sci 106:3624–3630.  https://doi.org/10.1002/app.26886 CrossRefGoogle Scholar
  270. Wendler F, Todi L-N, Meister F (2012) Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochim Acta 528:76–84.  https://doi.org/10.1016/j.tca.2011.11.015 CrossRefGoogle Scholar
  271. Wu J, Zhang J, Zhang H et al (2004) Homogeneous acetylation of cellulose in a newionic liquid. Biomacromolecules 5:266–268.  https://doi.org/10.1021/bm034398d CrossRefPubMedGoogle Scholar
  272. Würfel H, Kayser M, Heinze T (2018) Efficient and catalyst-free synthesis of cellulose acetoacetates. Cellulose 25:4919–4928.  https://doi.org/10.1007/s10570-018-1908-y CrossRefGoogle Scholar
  273. Xia K, Chen J, Yang R et al (2014) Green synthesis and crystal structure of regioselectively substituting 6-O-tritylcellulose derivatives. J Biobased Mater Bioenergy 8:587–593.  https://doi.org/10.1166/jbmb.2014.1472 CrossRefGoogle Scholar
  274. Xiao P, Zhang J, Feng Y et al (2014) Synthesis, characterization and properties of novel cellulose derivatives containing phosphorus: cellulose diphenyl phosphate and its mixed esters. Cellulose 21:2369–2378.  https://doi.org/10.1007/s10570-014-0256-9 CrossRefGoogle Scholar
  275. Xie H, Yu X, Yang Y, Zhao ZK (2014) Capturing CO2 for cellulose dissolution. Green Chem 16:2422–2427.  https://doi.org/10.1039/C3GC42395F CrossRefGoogle Scholar
  276. Xin P-P, Huang Y-B, Hse C-Y et al (2017) Modification of cellulose with succinic anhydride in TBAA/DMSO mixed solvent under catalyst-free conditions. Materials 10:526.  https://doi.org/10.3390/ma10050526 CrossRefPubMedCentralGoogle Scholar
  277. Xu Q, Chen L-F (1999) Ultraviolet spectra and structure of zinc–cellulose complexes in zinc chloride solution. J Appl Polym Sci 71:1441–1446.  https://doi.org/10.1002/(SICI)1097-4628(19990228)71:9%3c1441:AID-APP8%3e3.0.CO;2-G CrossRefGoogle Scholar
  278. Xu D, Edgar KJ (2012) TBAF and cellulose esters: unexpected deacylation with unexpected regioselectivity. Biomacromolecules 13:299–303.  https://doi.org/10.1021/bm201724s CrossRefPubMedGoogle Scholar
  279. Xu A, Wang J, Wang H (2010) Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem 12:268–275.  https://doi.org/10.1039/B916882F CrossRefGoogle Scholar
  280. Xu D, Li B, Tate C, Edgar KJ (2011) Studies on regioselective acylation of cellulose with bulky acid chlorides. Cellulose 18:405–419.  https://doi.org/10.1007/s10570-010-9476-9 CrossRefGoogle Scholar
  281. Xu Q, Song L, Zhang L et al (2018) Synthesis of cellulose acetate propionate and cellulose acetate butyrate in a CO2/DBU/DMSO system. Cellulose 25:205–216.  https://doi.org/10.1007/s10570-017-1539-8 CrossRefGoogle Scholar
  282. Yang Y, Xie H, Liu E (2014) Acylation of cellulose in reversible ionic liquids. Green Chem 16:3018–3023.  https://doi.org/10.1039/C4GC00199K CrossRefGoogle Scholar
  283. Yang Y, Song L, Peng C et al (2015) Activating cellulose via its reversible reaction with CO2 in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene for the efficient synthesis of cellulose acetate. Green Chem 17:2758–2763.  https://doi.org/10.1039/C5GC00115C CrossRefGoogle Scholar
  284. Yu Y, Miao J, Jiang Z et al (2016) Cellulose esters synthesized using a tetrabutylammonium acetate and dimethylsulfoxide solvent system. Appl Phys A 122:656.  https://doi.org/10.1007/s00339-016-0205-6 CrossRefGoogle Scholar
  285. Yu Y, Jiang Z, Miao J et al (2018) Application of the solvent dimethyl sulfoxide/tetrabutyl-ammonium acetate as reaction medium for mix-acylation of pulp. Adv Polym Technol 37:955–961.  https://doi.org/10.1002/adv.21742 CrossRefGoogle Scholar
  286. Yuan X, Cheng G (2015) From cellulose fibrils to single chains: understanding cellulose dissolution in ionic liquids. Phys Chem Chem Phys 17:31592–31607.  https://doi.org/10.1039/C5CP05744B CrossRefPubMedGoogle Scholar
  287. Yusup EM, Mahzan S, Jafferi N, Been CW (2015) The effectiveness of TBAF/DMSO in dissolving oil palm empty fruit bunch-cellulose phosphate. J Med Bioeng 4:165–169.  https://doi.org/10.12720/jomb.4.2.165-169 CrossRefGoogle Scholar
  288. Zhang J, Wu J, Cao Y et al (2009) Synthesis of cellulose benzoates under homogeneous conditions in an ionic liquid. Cellulose 16:299–308.  https://doi.org/10.1007/s10570-008-9260-2 CrossRefGoogle Scholar
  289. Zhang C, Liu R, Xiang J et al (2014) Dissolution mechanism of cellulose in N,N-dimethylacetamide/lithium chloride: revisiting through molecular interactions. J Phys Chem B 118:9507–9514.  https://doi.org/10.1021/jp506013c CrossRefPubMedGoogle Scholar
  290. Zhang H, Guo H, Wang B et al (2016) Synthesis and characterization of quaternized bacterial cellulose prepared in homogeneous aqueous solution. Carbohyd Polym 136:171–176.  https://doi.org/10.1016/j.carbpol.2015.09.029 CrossRefGoogle Scholar
  291. Zhang J, Wu J, Yu J et al (2017a) Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends. Mater Chem Front 1:1273–1290.  https://doi.org/10.1039/C6QM00348F CrossRefGoogle Scholar
  292. Zhang Z, Song J, Han B (2017b) Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem Rev 117:6834–6880.  https://doi.org/10.1021/acs.chemrev.6b00457 CrossRefPubMedGoogle Scholar
  293. Zhao H, Baker GA, Song Z et al (2008) Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem 10:696–705.  https://doi.org/10.1039/B801489B CrossRefGoogle Scholar
  294. Zheng X, Gandour RD, Edgar KJ (2013a) Probing the mechanism of TBAF-catalyzed deacylation of cellulose esters. Biomacromolecules 14:1388–1394.  https://doi.org/10.1021/bm400041w CrossRefPubMedGoogle Scholar
  295. Zheng X, Gandour RD, Edgar KJ (2013b) TBAF-catalyzed deacylation of cellulose esters: reaction scope and influence of reaction parameters. Carbohyd Polym 98:692–698.  https://doi.org/10.1016/j.carbpol.2013.06.010 CrossRefGoogle Scholar
  296. Zhong C, Wang C, Wang F et al (2016) Application of tetra-n-methylammonium hydroxide on cellulose dissolution and isolation from sugarcane bagasse. Carbohyd Polym 136:979–987.  https://doi.org/10.1016/j.carbpol.2015.10.001 CrossRefGoogle Scholar
  297. Zhong C, Cheng F, Zhu Y et al (2017) Dissolution mechanism of cellulose in quaternary ammonium hydroxide: revisiting through molecular interactions. Carbohyd Polym 174:400–408.  https://doi.org/10.1016/j.carbpol.2017.06.078 CrossRefGoogle Scholar
  298. Zhou J, Zhang L (2000) Solubility of cellulose in NaOH/urea aqueous solution. Polym J 32:866–870.  https://doi.org/10.1295/polymj.32.866 CrossRefGoogle Scholar
  299. Zhou J, Zhang L, Deng Q, Wu X (2004) Synthesis and characterization of cellulose derivatives prepared in NaOH/urea aqueous solutions. J Polym Sci Part A Polym Chem 42:5911–5920.  https://doi.org/10.1002/pola.20431 CrossRefGoogle Scholar
  300. Zhou J, Qin Y, Liu S, Zhang L (2006) Homogeneous synthesis of hydroxyethylcellulose in NaOH/urea aqueous solution. Macromol Biosci 6:84–89.  https://doi.org/10.1002/mabi.200500148 CrossRefPubMedGoogle Scholar
  301. Zhou J, Xu Y, Wang X et al (2008) Microstructure and aggregation behavior of methylcelluloses prepared in NaOH/urea aqueous solutions. Carbohyd Polym 74:901–906.  https://doi.org/10.1016/j.carbpol.2008.05.016 CrossRefGoogle Scholar
  302. Zweckmair T, Hettegger H, Abushammala H et al (2015) On the mechanism of the unwanted acetylation of polysaccharides by 1,3-dialkylimidazolium acetate ionic liquids: part 1—analysis, acetylating agent, influence of water, and mechanistic considerations. Cellulose 22:3583–3596.  https://doi.org/10.1007/s10570-015-0756-2 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Marc Kostag
    • 1
  • Martin Gericke
    • 2
  • Thomas Heinze
    • 2
  • Omar A. El Seoud
    • 1
    Email author
  1. 1.Institute of ChemistryUniversity of São PauloSão PauloBrazil
  2. 2.Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of JenaJenaGermany

Personalised recommendations