Advertisement

Cellulose

pp 1–11 | Cite as

Mechanochemistry of cellulose

  • Shigenori KugaEmail author
  • Min Wu
Review Paper
  • 109 Downloads

Abstract

Mechanochemistry is a rapidly developing field in organic chemistry and materials processing. Its application to cellulose has not been abundant, but is giving rise to important discoveries after ca. 2010. Here the works on mechanochemical processing of cellulose and related substances are reviewed under classification of reaction types: saccharification, esterification, radical reactions, decrystallization/nano-dispersion. Historical development in each topic is tabulated. Special emphasis is laid on solid-state milling by ball mill/attritor. Notable recent findings are briefly commented. Potential of mechanical devices is discussed. 82 references.

Keywords

Cellulose Mechanochemistry Ball mill Attritor Reactive milling Saccharification 

Notes

Acknowledgments

This work was made possible through collaboration with Pei Huang, Peipei Sun, Mengmeng Zhao, and other students at Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing. The work was supported by the National Natural Science Foundation of China (Nos. 51733009, 51472253, 51373191 and 51043003). We thank Ms. Feixue Lu for support in manuscript preparation.

References

  1. Ago M, Endo T, Hirotsu T (2004) Crystalline transformation of native cellulose from cellulose I to cellulose ID polymorph by a ball-milling method with a specific amount of water. Cellulose 11:163–167CrossRefGoogle Scholar
  2. Ago M, Endo T, Okajima K (2007) Effect of solvent on morphological and structural change of cellulose under ball-milling. Polym J 39:435–441CrossRefGoogle Scholar
  3. Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado J, Delogu F, Dutková E, Gaffet E, Gotor F, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571–7637PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bhama Iyer P, Sreenivasan S, Chidambareswaran PK, Patil NB (1984) Crystallization of amorphous cellulose. Text Res J 54:732–735CrossRefGoogle Scholar
  5. Bhama Iyer P, Sreenivasan S, Chidambareswaran PK, Patil NB (1986) Recrystallization of cellulose. Text Res J 56:509–511CrossRefGoogle Scholar
  6. Breiby DW, Sølling TI, Bunk O, Nyberg RB, Norrman K, Nielsen MM (2005) Structural surprises in friction-deposited films of poly(tetrafluoroethylene). Macromolecules 38:2383–2390CrossRefGoogle Scholar
  7. Bruckmann A, Krebs A, Bolm C (2008) Organocatalytic reactions: effects of ball milling, microwave and ultrasound irradiation. Green Chem 10:1131–1141CrossRefGoogle Scholar
  8. Calka A, Radlinski AP (1991) Universal high performance ball-milling device and its application for mechanical alloying. Mater Sci Eng A 134:1350–1353CrossRefGoogle Scholar
  9. Caulfield DF, Steffes RA (1969) Water-induced recrystallization of cellulose. TAPPI 52:1361–1366Google Scholar
  10. Dornath P, Cho HJ, Paulsen A, Dauenhauer P, Fan W (2015) Efficient mechano-catalytic depolymerization of crystalline cellulose by formation of branched glucan chains. Green Chem 17:769–775CrossRefGoogle Scholar
  11. Fokina EL, Budim NI, Kochnev VG, Chernik GG (2004) Planetary mills of periodic and continuous action. J Mater Sci 39:5217–5221CrossRefGoogle Scholar
  12. Friščić T (2012) Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal–organic frameworks. Chem Soc Rev 41:3493–3510PubMedCrossRefPubMedCentralGoogle Scholar
  13. Furcht PW, Silla H (1990) Comparison of simultaneous wet milling and enzymatic hydrolysis of cellulose in ball mill and attrition mill reactors. Biotechnol Bioeng 35:630–645PubMedCrossRefPubMedCentralGoogle Scholar
  14. Gaffet E et al (1999) Some recent developments in mechanical activation and mechanosynthesis. J Mater Chem 9:305–314CrossRefGoogle Scholar
  15. Gan T, Zhang Y, Su Y, Hu H, Huang H, Huang Z, Chen D, Yang M, Wu J (2017) Esterification of bagasse cellulose with metal salts as efficient catalyst in mechanical activation-assisted solid phase reaction system. Cellulose 24:5371–5387CrossRefGoogle Scholar
  16. Hermans PH, Weidinger A (1946) On the recrystallization of amorphous cellulose. J Am Chem Soc 68:2547–2552CrossRefGoogle Scholar
  17. Hermans PH, Weidinger A (1949) Change in crystallinity upon heterogeneous acid hydrolysis of cellulose fibers. J Polym Sci 4:317–322CrossRefGoogle Scholar
  18. Hess K, Kiessig H, Gundermann J (1941) Röntgenographische und elektronenmikroskopische. Z Phys Chem 49B:64–82Google Scholar
  19. Hick SM, Griebel C, Restrepo DT, Truitt JH, Buker EJ, Bylda C, Blair RG (2010) Mechanocatalysis for biomass-derived chemicals and fuels. Green Chem 12:468–474CrossRefGoogle Scholar
  20. Hilgert J, Meine N, Rinaldi R, Schüth F (2013) Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols. Energy Environ Sci 6:92–96CrossRefGoogle Scholar
  21. Hon DN-S (1979) Formation and behavior of mechanoradicals in pulp cellulose. J Appl Polym Sci 23:1487–1499CrossRefGoogle Scholar
  22. Hon DN-S (1980) On the reactivity of cellulose free radicals in graft copolymerization reactions. J Polym Sci A-Polym Chem 18:1857–1869CrossRefGoogle Scholar
  23. Howsmon JA, Marchessault RH (1959) The ball-milling of cellulose fibers and recrystallization effects. J Appl Polym Sci 1:313–322CrossRefGoogle Scholar
  24. Hu H et al (2015) Green mechanical activation-assisted solid phase synthesis of cellulose esters using a co-reactant: effect of chain length of fatty acids on reaction efficiency and structure properties of products. RSC Adv 5:20656–20662CrossRefGoogle Scholar
  25. Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2012) One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. ChemSusChem 5:2319–2322PubMedCrossRefPubMedCentralGoogle Scholar
  26. Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2015) Aqueous pretreatment for reactive ball milling of cellulose. Cellulose 20:2175–2178CrossRefGoogle Scholar
  27. James SL et al (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447PubMedCrossRefPubMedCentralGoogle Scholar
  28. Jones EO, Lee JM (1988) Kinetic analysis of bioconversion of cellulose in attrition bioreactor. Biotechnol Bioeng 31:35–40PubMedCrossRefPubMedCentralGoogle Scholar
  29. Käldström M, Meine N, Farès C, Schüth F, Rinaldi R (2014) Deciphering ‘water-soluble lignocellulose’ obtained by mechanocatalysis: new insights into the chemical processes leading to deep depolymerization. Green Chem 16:3528–3538CrossRefGoogle Scholar
  30. Kaneniwa N, Ikekawa A (1972) Influence of ball-milling atmosphere on decrease of molecular weight of polyvinylpyrrolidone powders. Chem Pharm Bull 20:1536–1543CrossRefGoogle Scholar
  31. Kaufman Rechulski MD, Käldström M, Richter U, Schüth F, Rinaldi R (2015) Mechanocatalytic depolymerization of lignocellulose performed on hectogram and kilogram scales. Ind Eng Chem Res 54:4581–4592CrossRefGoogle Scholar
  32. Kaupp G (2005) Organic solid-state reactions with 100% Yield. In: Toda F (ed) Organic solid state reactions. Springer, Berlin, pp 95–183CrossRefGoogle Scholar
  33. Kaupp G (2006) Waste-free large-scale syntheses without auxiliaries for sustainable production omitting purifying workup. CrystEngComm 8:794–804CrossRefGoogle Scholar
  34. Kaupp G, Schmeyers J, Naimi-Jamal MR, Zoz H, Ren H (2002) Reactive milling with the Simoloyer®: environmentally benign quantitative reactions without solvents and wastes. Chem Eng Sci 57:763–765CrossRefGoogle Scholar
  35. Kelsey RG, Shafizadeh F (1980) Enhancement of cellulose accessibility and enzymatic hydrolysis by simultaneous wet milling. Biotechnol Bioeng 22:1025–1036CrossRefGoogle Scholar
  36. Kleine T, Buendia J, Bolm C (2013) Mechanochemical degradation of lignin and wood by solvent-free grinding in a reactive medium. Green Chem 15:160–166CrossRefGoogle Scholar
  37. Kuzuya M, Yamauchi Y, S-i Kondo (1999) Mechanolysis of glucose-based polysaccharides as studied by electron spin resonance. J Phys Chem B 103:8051–8059CrossRefGoogle Scholar
  38. Lu Q, Lin W, Tang L, Wang S, Chen X, Huang B (2015a) A mechanochemical approach to manufacturing bamboo cellulose nanocrystals. J Mater Sci 50:611–619CrossRefGoogle Scholar
  39. Lu Q-l, Li X-y, Tang L-r, Lu B-l, Huang B (2015b) One-pot tandem reactions for the preparation of esterified cellulose nanocrystals with 4-dimethylaminopyridine as a catalyst. RSC Adv 5:56198–56204CrossRefGoogle Scholar
  40. Mais U, Esteghlalian AR, Saddler JN, Mansfield SD (2002) Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Appl Biochem Biotechnol 98:815–832PubMedCrossRefPubMedCentralGoogle Scholar
  41. May PA, Moore JS (2013) Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem Soc Rev 42:7497–7506PubMedCrossRefPubMedCentralGoogle Scholar
  42. Meine N, Rinaldi R, Schüth F (2012) Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem 5:1449–1454PubMedCrossRefPubMedCentralGoogle Scholar
  43. Motokawa T, Makino M, Enomoto-Rogers Y, Kawaguchi T, Ohura T, Iwata T, Sakaguchi M (2015) Novel method of the surface modification of the microcrystalline cellulose powder with poly(isobutyl vinyl ether) using mechanochemical polymerization. Adv Powder Technol 26:1383–1390CrossRefGoogle Scholar
  44. Murata Y, Han A, Komatsu K (2003) Mechanochemical synthesis of a novel C60 dimer connected by a germanium bridge and a single bond. Tetrahedron Lett 44:8199–8201CrossRefGoogle Scholar
  45. Nakagawa YS et al (2011) Development of innovative technologies to decrease the environmental burdens associated with using chitin as a biomass resource: mechanochemical grinding and enzymatic degradation. Carbohydr Polym 83:1843–1849CrossRefGoogle Scholar
  46. Neilson MJ, Kelsey RG, Shafizadeh F (1982) Enhancement of enzymatic hydrolysis by simultaneous attrition of cellulosic substrates. Biotechnol Bioeng 24:293–304PubMedCrossRefPubMedCentralGoogle Scholar
  47. Niu Y, Zhang X, He X, Zhao J, Zhang W, Lu C (2015) Effective dispersion and crosslinking in PVA/cellulose fiber biocomposites via solid-state mechanochemistry. Int J Biol Macromol 72:855–861PubMedCrossRefPubMedCentralGoogle Scholar
  48. Ott RL (1964) Mechanism of the mechanical degradation of cellulose. J Polym Sci A: Gen Pap 2:973–982Google Scholar
  49. Paes SS, Sun S, MacNaughtan W, Ibbett R, Ganster J, Foster TJ, Mitchell JR (2010) The glass transition and crystallization of ball milled cellulose. Cellulose 17:693–709CrossRefGoogle Scholar
  50. Qi X, Yang G, Jing M, Fu Q, Chiu F-C (2014) Microfibrillated cellulose-reinforced bio-based poly(propylene carbonate) with dual shape memory and self-healing properties. J Mater Chem A 2:20393–20401CrossRefGoogle Scholar
  51. Qiu W, Zhang F, Endo T, Hirotsu T (2004) Milling-induced esterification between cellulose and maleated polypropylene. J Appl Polym Sci 91:1703–1709CrossRefGoogle Scholar
  52. Rao X, Kuga S, Wu M, Huang Y (2015) Influence of solvent polarity on surface-fluorination of cellulose nanofiber by ball milling. Cellulose 22:2341–2348CrossRefGoogle Scholar
  53. Rodriguez B, Bruckmann A, Rantanen T, Bolm C (2007) Solvent-free carbon–carbon bond formations in ball mills. Adv Synth Catal 349:2213–2233CrossRefGoogle Scholar
  54. Ryu SK, Lee JM (1983) Bioconversion of waste cellulose by using an attrition bioreactor. Biotechnol Bioeng 25:53–65PubMedCrossRefPubMedCentralGoogle Scholar
  55. Sakaguchi M et al (2010) Diblock copolymer of bacterial cellulose and poly(methyl methacrylate) initiated by chain-end-type radicals produced by mechanical scission of glycosidic linkages of bacterial cellulose. Biomacromolecules 11:3059–3066PubMedCrossRefPubMedCentralGoogle Scholar
  56. Sakaguchi M, Ohura T, Iwata T, Enomoto-Rogers Y (2012) Nano cellulose particles covered with block copolymer of cellulose and methyl methacrylate produced by solid mechano chemical polymerization. Polym Degrad Stab 97:257–263CrossRefGoogle Scholar
  57. Schmidt R, Fuhrmann S, Wondraczek L, Stolle A (2016) Influence of reaction parameters on the depolymerization of H2SO4-impregnated cellulose in planetary ball mills. Powder Technol 288:123–131CrossRefGoogle Scholar
  58. Schüth F, Rinaldi R, Meine N, Käldström M, Hilgert J, Rechulski MDK (2014) Mechanocatalytic depolymerization of cellulose and raw biomass and downstream processing of the products. Catal Today 234:24–30CrossRefGoogle Scholar
  59. Senna M (2010) The promising aspects of processing nanomaterials under mechanical stressing for physicochemical viewpoints. Adva Powder Technol 21:586–591CrossRefGoogle Scholar
  60. Shrotri A, Lambert LK, Tanksale A, Beltramini J (2013) Mechanical depolymerisation of acidulated cellulose: understanding the solubility of high molecular weight oligomers. Green Chem 15:2761–2768CrossRefGoogle Scholar
  61. Shrotri A, Kobayashi H, Fukuoka A (2016) Mechanochemical synthesis of a carboxylated carbon catalyst and its application in cellulose hydrolysis. ChemCatChem 8:1059–1064CrossRefGoogle Scholar
  62. Sirviö J, Liimatainen H, Niinimäki J, Hormi O (2011) Dialdehyde cellulose microfibers generated from wood pulp by milling-induced periodate oxidation. Carbohydr Polym 86:260–265CrossRefGoogle Scholar
  63. Solala I, Henniges U, Pirker KF, Rosenau T, Potthast A, Vuorinen T (2015) Mechanochemical reactions of cellulose and styrene. Cellulose 22:3217–3224CrossRefGoogle Scholar
  64. Su J, Qiu M, Shen F, Qi X (2018) Efficient hydrolysis of cellulose to glucose in water by agricultural residue-derived solid acid catalyst. Cellulose 25:17–22CrossRefGoogle Scholar
  65. Sun P, Kuga S, Wu M, Huang Y (2014) Exfoliation of graphite by dry ball milling with cellulose. Cellulose 21:2469–2478CrossRefGoogle Scholar
  66. Takacs L (2013) The historical development of mechanochemistry. Chem Soc Rev 42:7649–7659PubMedCrossRefPubMedCentralGoogle Scholar
  67. Tang L, Huang B, Yang N, Li T, Lu Q, Lin W, Chen X (2013) Organic solvent-free and efficient manufacture of functionalized cellulose nanocrystals via one-pot tandem reactions. Green Chem 15:2369–2373CrossRefGoogle Scholar
  68. Tjerneld F, Persson I, Lee JM (1991) Enzymatic cellulose hydrolysis in an attrition bioreactor combined with an aqueous two-phase system. Biotechnol Bioeng 37:876–882PubMedCrossRefPubMedCentralGoogle Scholar
  69. Toda F, Yagi M, Kiyoshige K (1988) Baeyer–Villiger reaction in the solid state. J Chem Soc-Chem Commun 14:958–959CrossRefGoogle Scholar
  70. Toda F, Kiyoshige K, Yagi M (1989) NaBH4 reduction of ketones in the solid state. Angew Chem Int Ed 28:320–321CrossRefGoogle Scholar
  71. Toda F, Tanaka K, Hamai K (1990) Aldol condensations in the absence of solvent: acceleration of the reaction and enhancement of the stereoselectivity. J Chem Soc-Perkin Trans 1:3207–3209CrossRefGoogle Scholar
  72. Wang G-W (2013) Mechanochemical organic synthesis. Chem Soc Rev 42:7668–7700PubMedCrossRefGoogle Scholar
  73. Wang G-W, Komatsu K, Murata Y, Shiro M (1997) Synthesis and X-ray structure of dumb-bell-shaped C-120. Nature 387:583–586CrossRefGoogle Scholar
  74. Wu Z-H, Sumimoto M, Tanaka H (1995) Generation of oxygen-containing radicals in the aqueous media of mechanical pulping. J Wood Chem Technol 15:27–42CrossRefGoogle Scholar
  75. Xing H, Yaylayan VA (2018) Mechanochemical depolymerization of inulin. Carbohydr Res 460:14–18PubMedCrossRefPubMedCentralGoogle Scholar
  76. Yabushita M, Kobayashi H, Hara K, Fukuoka A (2014) Quantitative evaluation of ball-milling effects on the hydrolysis of cellulose catalysed by activated carbon. Catal Sci Technol 4:2312–2317CrossRefGoogle Scholar
  77. Yabushita M, Kobayashi H, Kuroki K, Ito S, Fukuoka A (2015) Catalytic depolymerization of chitin with retention of N-acetyl group. ChemSusChem 8:3760–3763PubMedCrossRefGoogle Scholar
  78. Yan L, Li W, Qi Z, Liu S (2006) Solvent-free synthesis of cellulose acetate by solid superacid catalysis. J Polym Res 13:375–378CrossRefGoogle Scholar
  79. Zhang Q, Jérôme F (2013) Mechanocatalytic deconstruction of cellulose: an emerging entry into biorefinery. ChemSusChem 6:2042–2044PubMedCrossRefPubMedCentralGoogle Scholar
  80. Zhang F, Qiu W, Yang L, Endo T, Hirotsu T (2002) Mechanochemical preparation and properties of a cellulose–polyethylene composite. J Mater Chem 12:24–26CrossRefGoogle Scholar
  81. Zhang W, Li C, Liang M, Geng Y, Lu C (2010) Preparation of carboxylate-functionalized cellulose via solvent-free mechanochemistry and its characterization as a biosorbent for removal of Pb2+ from aqueous solution. J Hazard Mater 181:468–473PubMedCrossRefPubMedCentralGoogle Scholar
  82. Zhang Q, Benoit M, De Oliveira Vigier K, Barrault J, Jégou G, Philippe M, Jérôme F (2013) Pretreatment of microcrystalline cellulose by ultrasounds: effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. Green Chem 15:963–969CrossRefGoogle Scholar
  83. Zhao H, Kwak JH, Wang Y, Franz JA, White JM, Holladay JE (2006) Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy Fuels 20:807–811CrossRefGoogle Scholar
  84. Zhao M, Kuga S, Jiang S, Wu M, Huang Y (2016a) Cellulose nanosheets induced by mechanical impacts under hydrophobic environment. Cellulose 23:2809–2818CrossRefGoogle Scholar
  85. Zhao M, Kuga S, Wu M, Huang Y (2016b) Hydrophobic nanocoating of cellulose by solventless mechanical milling. Green Chem 18:3006–3012CrossRefGoogle Scholar
  86. Zoz H, Ernst D, Reichardt R, Ren H, Mizutani T, Nishida M, Okouchi H (1999) Simoloyer CM100s: semi-continuous mechanical alloying on a production scale using cycle operation-Part II. Mater Manuf Process 14:861–874CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Professor Emeritus, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
  2. 2.Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations