pp 1–11 | Cite as

Macroscopic cellulose probes for the measurement of polymer grafted surfaces

  • Andrea Träger
  • Gregor Klein
  • Christopher Carrick
  • Torbjörn Pettersson
  • Mats Johansson
  • Lars Wågberg
  • Samuel A. PendergraphEmail author
  • Anna CarlmarkEmail author
Original Research


A synthesis protocol was identified to produce covalent grafting of poly(dimethyl siloxane) from cellulose, based on prior studies of analogous ring opening polymerizations. Following this polymer modification of cellulose, the contact adhesion was anticipated to be modified and varied as a function of the polymer molecular mass. The synthetic details were optimized for a filter paper surface before grafting the polymer from bulk cellulose spheres. The adhesion of the unmodified and grafted, bulk cellulose spheres were evaluated using the Johnson–Kendall–Roberts (JKR) theory with a custom build contact adhesion testing setup. We report the first example of grafting poly(dimethyl siloxane) directly from bulk cellulose using ring opening polymerization. For short grafting lengths, both the JKR work of adhesion and the adhesion energy at the critical energy release rate (Gc) were comparable to unmodified cellulose beads. When polymer grafting lengths were extended sufficiently where chain entanglements occur, both the JKR work of adhesion and Gc were increased by as much as 190%. Given the multitude of options available to graft polymers from cellulose, this study shows the potential to use this type of cellulose spheres to study the interaction between different polymer surfaces in a controlled manner.

Graphical abstract


Grafted polymer Cellulose Contact mechanics Adhesion Johnson–Kendall–Roberts theory 



The Swedish Research Council (Vetenskapsrådet) is gratefully acknowledged for funding this research. S.A.P. would like to thank the SK Translational Paper Chemistry program at RISE Research Insitutes of Sweden Bioeconomy Division and the KAMI Research Foundation for funding support. Lars Wågberg acknowledges Wallenberg Wood Science Centre for financing.

Supplementary material

10570_2018_2196_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1203 kb)


  1. Bartlett MD, Crosby AJ (2013) Scaling normal adhesion force capacity with a generalized parameter. Langmuir 29:11022–11027CrossRefGoogle Scholar
  2. Bartlett MD, Croll AB, Crosby AJ (2012a) Designing bio-inspired adhesives for shear loading: from simple structures to complex patterns. Adv Funct Mater 22:4985–4992CrossRefGoogle Scholar
  3. Bartlett MD, Croll AB, KIng DR, Paret BM, Irschick DJ, Crosby AJ (2012b) Looking beyond fibrillar features to scale gecko-like adhesion. Adv Mater 24:1078–1083CrossRefGoogle Scholar
  4. Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers techniques. Factors Appl Prog Polym Sci 29:767–814CrossRefGoogle Scholar
  5. Bureau L, Léger L (2004) Sliding friction at a rubber/brush interface. Langmuir 20:4523–4529CrossRefGoogle Scholar
  6. Carlmark A, Larsson E, Malmström E (2012) Grafting of cellulose by ring-opening polymerisation—a review. Eur Polym J 48:1646–1659CrossRefGoogle Scholar
  7. Carrick C, Larsson PA, Brismar H, Aidun C, Wågberg L (2014a) Native and functionalized micrometre-sized cellulose capsules prepared by microfluidic flow focusing. RSC Adv 4:19061–19067CrossRefGoogle Scholar
  8. Carrick C, Pendergraph SA, Wågberg L (2014b) Nanometer smooth, macroscopic spherical cellulose probes for contact adhesion measurements. ACS Appl Mater Interfaces 6:20928–20935CrossRefGoogle Scholar
  9. Carrick C, Wågberg L, Larsson PA (2014c) Immunoselective cellulose nanospheres: a versatile platform for nanotheranostics. ACS Macro Lett 3:1117–1120CrossRefGoogle Scholar
  10. Chaudhury MK, Whitesides GM (1991) Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivaties. Langmuir 7:1013–1025CrossRefGoogle Scholar
  11. Chen W-L, Cordero R, Tran H, Ober CK (2017) 50th Anniversary perspective: polymer brushes: novel surfaces for future materials. Macromolecules 50:4089–4113CrossRefGoogle Scholar
  12. Colthup NB, Daly LH, Wiberley SE (1975) Chapter 12-Compounds containing boron, silicon, phosphorus, sulfur, or halogen. In: Introduction to infrared and raman spectroscopy. Elsevier, Amsterdam, p 338Google Scholar
  13. Creton C, Leibler L (1996) How does tack depend on time of contact and contact pressure? J Polym Sci, Part B: Polym Phys 34:545–554CrossRefGoogle Scholar
  14. Creton C, Brown HR, Shull KR (1994) Molecular weight effects in chain pullout. Macromolecules 27:3174–3183CrossRefGoogle Scholar
  15. de Gennes PG (1976) Scaling theory of polymer adsorption. J Phys 1(37):1445–1452CrossRefGoogle Scholar
  16. de Gennes PG (1980) Conformations of polymers attached to an interface. Macromolecules 13:1069–1075CrossRefGoogle Scholar
  17. Deruelle M, Léger L, Tirrell M (1995) Adhesion at the solid-elastomer interface: influence of the interfacial chains. Macromolecules 28:7419–7428CrossRefGoogle Scholar
  18. Dirany M, Dies L, Restagno F, Léger L, Poulard C, Miquelard-Garnier G (2015) Chemical modification of pdms surface without impacting the viscoelasticity: model systems for a better understanding of elastomer/elastomer adhesion and friction. Coll Surf A 468:174–183CrossRefGoogle Scholar
  19. Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15:2327–2346CrossRefGoogle Scholar
  20. Eriksson M, Notley SM, Wågberg L (2007) Cellulose thin films: degree of cellulose ordering and its influence on adhesion. Biomacromolecules 8:912–919CrossRefGoogle Scholar
  21. Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779CrossRefGoogle Scholar
  22. Gao C, Wan Y, Lei X, Qu J, Yan T, Dai K (2011) Polylysine coated bacterial cellulose nanofibers as novel templates for bone-like apatite deposition. Cellulose 18:1555–1561CrossRefGoogle Scholar
  23. Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465CrossRefGoogle Scholar
  24. Gordon GV et al (2010) Impact of polymer molecular weight on the dynamics of poly(dimethylsiloxane)-polysilicate nanocomposites. Macromolecules 43:10132–10142CrossRefGoogle Scholar
  25. Gordon ZD, Yang T, Morgado GBG, Chan CK (2016) Preparation of nano- and microstructured garnet Li7La3Zr2O12 solid electrolytes for li-ion batteries via cellulose templating. ACS Sustainable Chem Eng 4:6391–6398CrossRefGoogle Scholar
  26. Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals curr opin colloid. Interface Sci 29:32–45Google Scholar
  27. Guidetti G, Atifi S, Vignolini S, Hamad WY (2016) Flexible photonic cellulose nanocrystal films. Adv Mater 28:10042–10047CrossRefGoogle Scholar
  28. Gustafsson E, Johansson E, Wågberg L, Pettersson T (2012) Direct adhesive measurements between wood biopolymer model surfaces. Biomacromolecules 13:3046–3053CrossRefGoogle Scholar
  29. Gustafsson E, Pelton R, Wågberg L (2016) Rapid development of wet adhesion between carboxymethylcellulose modified cellulose surfaces laminated with polyvinylamine adhesive. ACS Appl Mater Interfaces 8:24161–24167CrossRefGoogle Scholar
  30. Hamad WY (2016) Photonic and semiconductor materials based on cellulose nanocrystals. In: Rojas OJ (ed) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Springer, Cham, pp 287–328. CrossRefGoogle Scholar
  31. Hansson S, Östmark E, Carlmark A, Malmström E (2009) ARGET ATRP for versatile grafting of cellulose using various monomers. ACS Appl Mater Interfaces 1:2651–2659CrossRefGoogle Scholar
  32. Hu H, Yuan W, Liu F-S, Cheng G, Xu F-J, Ma J (2015) Redox-responsive polycation-functionalized cotton cellulose nanocrystals for effective cancer treatment. ACS Appl Mater Interfaces 7:8942–8951CrossRefGoogle Scholar
  33. Hui C-Y, Baney JM, Kramer EJ (1998) Contact mechanics and adhesion of viscoelastic spheres. Langmuir 14:6570–6578CrossRefGoogle Scholar
  34. King DR, Bartlett MD, Gilman CA, Irschick DJ, Crosby AJ (2014) Creating gecko-like adhesives for “real world” surfaces. Adv Mater 25:4345–4351CrossRefGoogle Scholar
  35. Littunen K, Hippi U, Johansson L-S, Österberg M, Tammelin T, Laine J, Seppälä J (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84:1039–1047CrossRefGoogle Scholar
  36. Liu K-K (2006) Deformation behaviour of soft particles: a review. J Phys D Appl Phys 39:R189–R199CrossRefGoogle Scholar
  37. Liu Y, Klep V, Zdyrko B, Luzinov I (2004) Polymer grafting via atrp initiated from macroinitiator synthesized on surface. Langmuir 20:6710–6718. CrossRefPubMedGoogle Scholar
  38. Lohmeijer BGG et al (2006) Organocatalytic living ring-opening polymerization of cyclic carbosiloxanes. Org Lett 8:4683–4686CrossRefGoogle Scholar
  39. Malmström E, Carlmark A (2012) Controlled grafting of cellulose fibres–an outlook beyond paper and cardboard. Polym Chem 3:1702–1713CrossRefGoogle Scholar
  40. Marais A, Pendergraph SA, Wågberg L (2015) Nanometer-thick hyaluronic acid self-assemblies with strong adhesive properties. ACS Appl Mater Interfaces 7:15143–15147CrossRefGoogle Scholar
  41. Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Mater 6:1745–1766CrossRefGoogle Scholar
  42. Moon Robert J, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  43. Oksman K et al (2016) Review of the recent developments in cellulose nanocomposite processing. Composites, Part A 83:2–18CrossRefGoogle Scholar
  44. Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23:93–123CrossRefGoogle Scholar
  45. Park J-W, Kim H, Han M (2010) Polymeric Self-assembled monolayers derived from surface-active copolymers: a modular approach to functionalized surfaces. Chem Soc Rev 39:2935–2947CrossRefGoogle Scholar
  46. Pendergraph SA, Klein G, Johansson MKG, Carlmark A (2014) Mild and rapid surface initiated ring-opening polymerisation of trimethylene carbonate from cellulose. RSC Adv 4:20737–20743CrossRefGoogle Scholar
  47. Qi H, Schulz B, Vad T, Liu J, Mäder E, Seide G, Gries T (2015) Novel carbon nanotube/cellulose composite fibers as multifunctional materials. ACS Appl Mater Interfaces 7:22404–22412CrossRefGoogle Scholar
  48. Roy D, Semsarilar M, Guthrie JT, Perrier Sb (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064CrossRefGoogle Scholar
  49. Rundlöf M, Karlsson M, Wågberg L, Poptoshev E, Rutland M, Claesson P (2000) Application of the JKR method to the measurement of adhesion to Langmuir–Blodgett cellulose surfaces. J Colloid Interface Sci 230:441–447CrossRefGoogle Scholar
  50. She H, Malotky D, Chaudhury MK (1998) Estimation of adhesion hysteresis at polymer/oxide interfaces using rolling contact mechanics. Langmuir 14:3090–3100CrossRefGoogle Scholar
  51. Shull KR (2002) Contact mechanics and the adhesion of soft solids. Mater Sci Eng R Rep 36:1–45CrossRefGoogle Scholar
  52. Shull KR, Ahn D, Chen W-L, Flaningan CM, Crosby AJ (1998) Axisymmetric adhesion tests of soft materials macromol. Chem Phys 199:489–511Google Scholar
  53. Utsel S, Bruce C, Pettersson T, Fogelström L, Carlmark A, Malmström E, Wågberg L (2012) Physical tuning of cellulose-polymer interactions utilizing cationic block copolymers based on pcl and quaternized PDMAEMA. ACS Appl Mater Interfaces 4:6796–6807CrossRefGoogle Scholar
  54. Wang C-Y et al (2015) Stable low-voltage operation top-gate organic field-effect transistors on cellulose nanocrystal substrates. ACS Appl Mater Interfaces 7:4804–4808CrossRefGoogle Scholar
  55. Zhang Z, Morse AJ, Armes SP, Lewis AL, Geoghegan M, Leggett GJ (2013) Nanoscale contact mechanics of biocompatible polyzwitterionic brushes. Langmuir 29:10684–10692CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Andrea Träger
    • 1
  • Gregor Klein
    • 1
  • Christopher Carrick
    • 1
  • Torbjörn Pettersson
    • 1
    • 2
  • Mats Johansson
    • 1
  • Lars Wågberg
    • 1
    • 2
  • Samuel A. Pendergraph
    • 1
    • 3
    Email author
  • Anna Carlmark
    • 1
    • 3
    Email author
  1. 1.Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyStockholmSweden
  2. 2.School of Engineering Sciences in Chemistry, Biotechnology and Health, Wallenberg Wood Science Centre, WWSCKTH Royal Institute of TechnologyStockholmSweden
  3. 3.RISE Research Institutes of SwedenStockholmSweden

Personalised recommendations