, Volume 26, Issue 4, pp 2403–2423 | Cite as

Composite up-conversion luminescent films containing a nanocellulose and SrF2:Ho particles

  • P. P. FedorovEmail author
  • A. A. Luginina
  • S. V. Kuznetsov
  • V. V. Voronov
  • A. A. Lyapin
  • A. S. Ermakov
  • D. V. Pominova
  • A. D. Yapryntsev
  • V. K. Ivanov
  • A. A. Pynenkov
  • K. N. Nishchev
Original Research


The synthesis of up-conversion luminescent composite films based on a nanocellulose matrix containing Sr1−xHoxF2+x particles was proposed. The combination of sulfuric acid hydrolysis and ultrasonication allowed us to synthesize a series of stable nanocellulose dispersions from various raw materials (powdered sulphate bleached wood pulp, Blue Ribbon filter paper, and microcrystalline cellulose Avicel). The size distribution of cellulose nanoparticles in the aqueous dispersions was determined. Cellulose nanocrystals (CNC) and/or cellulose nanofibrils (CNF) dispersions were used to fabricate thin films by solution casting followed by solvent evaporation under ambient conditions. The size and shape of cellulose nanoparticles, surface morphology, crystallinity index of nanocellulose, polymerization degree, and optical properties were studied. By mixing aqueous dispersions of CNC with up-conversion Sr1−xHoxF2+x particles, homogeneous suspensions were obtained. Finally, a solution casting technique was used to prepare CNC/Sr1−xHoxF2+x and CNC/CNF/Sr1−xHoxF2+x nanocomposite films. CNC/CNF dispersions were utilized for the production of flexible, durable, transparent composite films. The synthesized nanocomposites demonstrated intense red luminescence upon Ho3+ excitation by 1912 nm laser radiation. The obtained up-conversion luminescent composite films can be considered as a promising material for photonics, in particular for near-IR laser radiation visualization, luminescent labeling and luminescent sensorics.

Graphical abstract


Cellulose nanocrystals Cellulose nanofibrils Nanocomposites SrF2:Ho3+ Up-conversion luminescent films 



We thank Polycell LLC for providing powdered cellulose PCC-0.25 sample and Biokhim LLC for providing Avicel PC105 microcrystalline cellulose sample. The support from Russian Foundation for Basic Research (Grant 16-29-11784-ofi-m) is greatly acknowledged. Authors express their sincere gratitude to Richard L. Simoneaux, and Elena V. Chernova for their most kind assistance in the preparation of the present manuscript and Vladimir N. Kryazhev for polymerization degree analysis.

Supplementary material

10570_2018_2194_MOESM1_ESM.doc (1.5 mb)
Supplementary material 1 (DOC 1491 kb)


  1. Abbasi-Moayed S, Golmohammadi H, Hormozi-Nezhad MR (2018) A nanopaper-based artificial tongue: a ratiometric fluorescent sensor array on bacterial nanocellulose for chemical discrimination applications. Nanoscale 10:2492–2502. CrossRefPubMedGoogle Scholar
  2. Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20:785–794. CrossRefGoogle Scholar
  3. Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88. CrossRefPubMedGoogle Scholar
  4. Al-Dulaimi AA, Wanrosli W (2017) Isolation and characterization of nanocrystalline cellulose from totally chlorine free oil palm empty fruit bunch pulp. J Polym Environ 25:192–202. CrossRefGoogle Scholar
  5. Araki J, Wada M, Kuga S, Okano T (2000) Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir 16:2413–2415. CrossRefGoogle Scholar
  6. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139–174. CrossRefPubMedGoogle Scholar
  7. Beck-Candanedo S, Roman M, Gray D (2005) Effect of conditions on the properties behavior of wood cellulose nanocrystals suspensions. Biomacromol 6:1048–1054. CrossRefGoogle Scholar
  8. Benítez AJ, Walther A (2017) Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. J Mater Chem A 5:16003–16024. CrossRefGoogle Scholar
  9. Bumbudsanpharoke N, Lee W, Chung U, Ko S (2018) Study of humidity-responsive behavior in chiral nematic cellulose nanocrystal films for colorimetric response. Cellulose 25:305–317. CrossRefGoogle Scholar
  10. Cao Y, Jiang Y, SongY Cao S, Miao M, Feng X, Fang J, Shi L (2015) Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth. Carbohydr Polym 131:152–158. CrossRefPubMedGoogle Scholar
  11. Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811. CrossRefGoogle Scholar
  12. Chu G, Feng J, Wang Y, Zhang X, Xu Y, Zhang H (2014) Chiral nematic mesoporous films of ZrO2:Eu3+: new luminescent materials. Dalton Trans 43:15321–15327. CrossRefPubMedGoogle Scholar
  13. Chu G, Wang X, Chen T, Xu W, Wang Y, Song H, Xu Y (2015) Chiral electronic transitions of YVO4:Eu3+ nanoparticles in cellulose based photonic materials with circularly polarized excitation. J Mater Chem C 3:3384–3390. CrossRefGoogle Scholar
  14. Dai S, Prempeh N, Liu D, Fan Y, Gu M, Chang Y (2017) Cholesteric film of Cu(II)-doped cellulose nanocrystals for colorimetric sensing of ammonia gas. Carbohydr Polym 174:531–539. CrossRefPubMedGoogle Scholar
  15. Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811CrossRefPubMedGoogle Scholar
  16. Dumanli AG, Kamita G, Landman J, van der Kooij H, Glover BJ, Baumberg JJ, Steiner U, Vignolini S (2014) Controlled, bio-inspired self-assembly of cellulose-based chiral reflectors. Adv Opt Mater 2:646–650. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65. CrossRefGoogle Scholar
  18. Espinosa SC, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromol 14:1223–1230. CrossRefGoogle Scholar
  19. Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30. CrossRefGoogle Scholar
  20. Fedorov PP, Luginina AA, Kuznetsov SV, Osiko VV (2011) Nanofluorides. J Fluor Chem 132:1012–1039. CrossRefGoogle Scholar
  21. Fedorov PP, Luginina AA, Popov AI (2015) Transparent oxyfluoride glass ceramics. J Fluor Chem 172:22–50. CrossRefGoogle Scholar
  22. Fedorov PP, Luginina AA, Rozhnova YA, Kuznetsov SV, Voronov VV, Uvarov OV, Pynenkov AA, Nishchev KN (2017) Preparation of nanodispersed fluorite-type Sr1−xRxF2+x (R = Er, Yb, Ho) phases from citrate solutions. J Fluor Chem 194:8–15. CrossRefGoogle Scholar
  23. Feng X, Meng X, Zhao J, Miao M, Shi L, Zhang S, Fang J (2015) Extraction and preparation of cellulose nanocrystals from dealginate kelp residue: structures and morphological characterization. Cellulose 22:1763–1772. CrossRefGoogle Scholar
  24. Frka-Petesic B, Guidetti G, Kamita G, Vignolini S (2017) Controlling the photonic properties of cholesteric cellulose nanocrystal films with magnets. Adv Mater 29:1701469. CrossRefGoogle Scholar
  25. Giese M, Blusch LK, Khan MK, MacLachlan M (2015) Functional materials from cellulose-derived liquid crystal templates. J Angew Chem Int Ed 54:2888–2910. CrossRefGoogle Scholar
  26. Golmohammadi H, Morales-Narváez E, Naghdi T, Merkoçi A (2017) Nanocellulose in sensing and biosensing. Chem Mater 29:5426–5446CrossRefGoogle Scholar
  27. Gray DG (2016) Recent advances in chiral nematic structure and iridescent color of cellulose nanocrystal films. Nanomaterials 6:213. CrossRefPubMedCentralGoogle Scholar
  28. Gray DG, Mu X (2015) Chiral nematic structure of cellulose nanocrystal suspensions and films; polarized light and atomic force microscopy. Materials 8:7873–7888. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals: a review. Curr Opin Colloid Interface Sci 29:32–45. CrossRefGoogle Scholar
  30. Gu Z, Yan L, Tain G, Li S, Chai Z, Zhao Y (2013) Resent advances in design and fabrication of upconversion nanoparticles and their safe theranostics application. Adv Mater 25:3758–3779CrossRefPubMedGoogle Scholar
  31. Haase M, Schäfer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50:5808–5829CrossRefGoogle Scholar
  32. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542. CrossRefPubMedGoogle Scholar
  33. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. CrossRefPubMedGoogle Scholar
  34. Hamid SBA, Zain SK, Das R, Centi G (2016) Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose. Carbohydr Polym 138:349–355. CrossRefPubMedGoogle Scholar
  35. Hassan ML, Fadel SM, Moorefield C, Newkome GR (2014) Dendronized cellulose nanocrystals as templates for preparation of zns and cds quantum dots. J Macromol Sci A 51:743–749. CrossRefGoogle Scholar
  36. Haywood AD, Davis VF (2017) Effects of liquid crystalline and shear alignment on the optical properties of cellulose nanocrystal films. Cellulose 24:705–716. CrossRefGoogle Scholar
  37. Ioelovich MY (2012) Study of cellulose interaction with concentrated solutions of sulfuric acid. ISRN Chem Eng. CrossRefGoogle Scholar
  38. Ioelovich MY (2016) Models of supramolecular structure and properties of cellulose. Polym Sci Ser A 58:925–943. CrossRefGoogle Scholar
  39. Ji S, Jang J, Cho E, Kim SH, Kang ES, Kim J, Kim HK, Kong H, Kim SK, Kim JY, Park JU (2017) High dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructures. Adv Mater 29:1700538. CrossRefGoogle Scholar
  40. Jiang H, Zhou D, Qu D, Chu G, Xu W, Song H, Xu Y (2016) Self-organized helical superstructure of photonic cellulose loaded with upconversion nanoparticles showing modulated luminescence. RSC Adv 6:76231–76236. CrossRefGoogle Scholar
  41. Jonoobil M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969. CrossRefGoogle Scholar
  42. Junka K, Guo J, Filpponen I, Laine J, Rojas OJ (2014) Modification of cellulose nanofibrils with luminescent carbon dots. Biomacromol 15:876–881. CrossRefGoogle Scholar
  43. Kaiser M, Wurth C, Kraft M, Hyppanen I, Soukka T, Resch-Genger U (2017) Power-dependent upconversion quantum yield of NaYF4:Yb3+, Er3+ nano- and micrometer-sized particles—measurements and simulations. Nanoscale 9:10051–10058. CrossRefPubMedGoogle Scholar
  44. Kelly JA, Shopsowitz KE, Ahn JM, Hamad WY, MacLachlan MJ (2012) Chiral nematic stained glass: controlling the optical properties of nanocrystalline cellulose-templated materials. Langmuir 28:17256–17262. CrossRefPubMedGoogle Scholar
  45. Kim DY, Lee BM, Koo DH, Kang PH, Jeun JP (2016) Preparation of nanocellulose from a kenaf core using E-beam irradiation and acid hydrolysis. Cellulose 23:3039–3049. CrossRefGoogle Scholar
  46. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. CrossRefGoogle Scholar
  47. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials: a review. Angew Chem Int Edit 50:5438–5466. CrossRefGoogle Scholar
  48. Kuznetsov S, Ermakova Y, Voronov V, Fedorov P, Busko D, Howard IA, Richards BS, Turshatov A (2018) Up-conversion quantum yield of SrF2:Yb3+, Er3+ sub-micron particles prepared by precipitation from aqueous solution. J Mater Chem C 6:598–604. CrossRefGoogle Scholar
  49. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764CrossRefPubMedGoogle Scholar
  50. Lee BM, Jeun JP, Kang PH, Choi JH, Hong SK (2017) Isolation and characterization of nanocrystalline cellulose from different precursor materials. Fibers Polym 18:272–277. CrossRefGoogle Scholar
  51. Li M, Li X, Xiao HN, James TD (2017) Fluorescence sensing with cellulose-based materials. ChemistryOpen 6:685–696. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ličen M, Majaron B, Noh J, Schütz C, Bergström L, Lagerwall J, Drevenšek-Olenik I (2016) Correlation between structural properties and iridescent colors of cellulose nanocrystalline films. Cellulose 23:3601–3609. CrossRefGoogle Scholar
  53. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future. EurPolym J 59:302–325. CrossRefGoogle Scholar
  54. Liu D, Zhong T, Chang PR, Li K, Wu Q (2010) Starch composites reinforced by bamboo cellulosic crystals. Biores Technol 101:2529–2536. CrossRefGoogle Scholar
  55. Liu D, Wang S, Ma Z, Tian D, Gu M, Lin F (2014) Structure-color mechanism of iridescent cellulose nanocrystal films. RSC Adv 4:39322–39331. CrossRefGoogle Scholar
  56. Lyapin AA, Ryabochkina PA, Chabushkin AN, Ushakov SN, Fedorov PP (2015) Investigation of the mechanisms of upconversion luminescence in Ho3+ doped CaF2 crystals and ceramics upon excitation of 5I7 level. J Lumin 167:120–125. CrossRefGoogle Scholar
  57. Lyapin AA, Kuznetsov SV, Ryabochkina PA, Merculov AP, Chernov MV, Ermakova YA, Luginina AA, Fedorov PP (2017) Upconversion luminescence of Ca1−xHoxF2+x and Sr0.98–xEr0.02HoxF2.02+x powders upon excitation by an infrared laser. Laser Phys Lett 14:076003CrossRefGoogle Scholar
  58. Magyar A, Hu W, Shanley T, Flatte ME, Hu E, Aharanovich I (2014) Synthesis of luminescent europium defects in diamond. Nat Commun 5:3523CrossRefPubMedGoogle Scholar
  59. Martins MA, Teixeira EM, Corrêa AC, Ferreira M, Mattoso LHC (2011) Extraction and characterization of cellulose whiskers from commercial cotton fibers. J Mater Sci 46:7858–7864. CrossRefGoogle Scholar
  60. Miao M, Zhao J, Feng X, Cao Y, Cao S, Zhao Y, Ge X, Sun L, Shi L, Fang J (2015) Fast fabrication of transparent and multi-luminescent TEMPO-oxidized nanofibrillated cellulose nanopaper functionalized with lanthanide complexes. J Mater Chem C 3:2511–2517. CrossRefGoogle Scholar
  61. Mondal S (2017) Preparation, properties and applications of nanocellulosic materials. Carbohydr Polym 163:301–316. CrossRefPubMedGoogle Scholar
  62. Montanar S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671. CrossRefGoogle Scholar
  63. Moon RJ, Schueneman GT, Simonsen J (2016) Overview of cellulose nanomaterials, their capabilities and applications. JOM 68:2383–2394. CrossRefGoogle Scholar
  64. Morales-Narváez E, Golmohammadi H, Naghdi T, Yousefi H, Kostiv U, Horák D, Pourreza N, Merkoçi A (2015) Nanopaper as an optical sensing platform. ACS Nano 9:7296–7305CrossRefPubMedGoogle Scholar
  65. Mu X, Gray DG (2014) Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process. Langmuir 30:9256–9260. CrossRefPubMedGoogle Scholar
  66. Naderi A (2017) Nanofibrillated cellulose: properties reinvestigated. Cellulose 24:1933–1945. CrossRefGoogle Scholar
  67. Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Ib and cellulose II. Carbohydr Polym 135:1–9. CrossRefPubMedGoogle Scholar
  68. Nedielko M, Alekseev O, Chornii V, Kovalov K, Lazarenko M, Nedilko S, Scherbatskyi V, Boyko V, Sheludko V (2018) Structure and properties of microcrystalline cellulose “ceramics-like” composites incorporated with LaVO4:Sm oxide compound. Acta Phys Pol A 133:838–842. CrossRefGoogle Scholar
  69. Neto WPF, Putaux JL, Mariano M, Ogawa Y, Otaguro H, Pasquinia D, Dufresne A (2016) Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Adv 6:76017–76027. CrossRefGoogle Scholar
  70. Nguyen TD, Hamad WY, MacLachlan MJ (2017) Near-IR-sensitive upconverting nanostructured photonic cellulose films. Adv Opt Mater 5:1600514. CrossRefGoogle Scholar
  71. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082. CrossRefPubMedGoogle Scholar
  72. Niu F, Li M, Huang Q, Zhang X, Pan W, Yang J, Li J (2017) The characteristic and dispersion stability of nanocellulose produced by mixed acid hydrolysis and ultrasonic assistance. Carbohydr Polym 165:197–204. CrossRefPubMedGoogle Scholar
  73. Oguzlu H, Danumah C, Boluk Y (2017) Colloidal behavior of aqueous cellulose nanocrystal suspensions. Curr Opin Colloid Interface Sci COCIS 29:46–56. CrossRefGoogle Scholar
  74. Pak AM, Ermakova JA, Kuznetsov SV, Ryabova AV, Pominova DV, Voronov VV (2017) Efficient visible range SrF2:Yb:Er- and SrF2:Yb:Tm-based up-conversion luminophores. J Fluor Chem 194:16–22. CrossRefGoogle Scholar
  75. Pan J, Hamad W, Straus SK (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43:3851–3858. CrossRefGoogle Scholar
  76. Park JH, Noh JH, Schütz C, Salazar-Alvarez G, Scalia G, Bergström L, Lagerwall JFP (2014) Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions. ChemPhysChem 15:1477–1484. CrossRefPubMedGoogle Scholar
  77. Parker RM, Guidetti G, Williams CA, Zhao T, Narkevicius A, Vignolini S, Frka-Petesic B (2017) The self-assembly of cellulose nanocrystals: hierarchical design of visual appearance. Adv Mater 29:1704477. CrossRefGoogle Scholar
  78. Qing Y, Sabo R, Wu Y, Zhu JY, Cai Z (2015) Self-assembled optically transparent cellulose nanofibril films: effect of nanofibril morphology and drying procedure. Cellulose 22:1091–1102. CrossRefGoogle Scholar
  79. Querejeta-Fernandez A, Kopera B, Prado KS, Klinkova A, Methot M, Chauve G, Bouchard J, Helmy AS, Kumacheva E (2015) Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles. ACS Nano 9:10377–10385. CrossRefPubMedGoogle Scholar
  80. Querejeta-Fernández A, Chauve G, Metho M, Bouchard J, Kumacheva E (2014) Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J Am Chem Soc 136:4788–4793. CrossRefPubMedGoogle Scholar
  81. Revol JF, Godbout L, Gray DG (1998) Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J Pulp Paper Sci 24:146–149Google Scholar
  82. Ritter B, Krahl T, Scholz G, Kemnitz E (2016) Local structures of solid solutions Sr1−xYxF2+x (x = 0…0.5) with fluorite structure prepared by sol-gel and mechanochemical syntheses. J Phys Chem C 120:8992–8999. CrossRefGoogle Scholar
  83. Rozhnova YA, Luginina AA, Voronov VV, Ermakov RP, Kuznetsov SV, Ryabova AV, Pominova DV, Arbenina VV, Osiko VV, Fedorov PP (2014) White light luminophores based on Yb3+/Er3+/Tm3+-coactivated strontium fluoride powders. Mater Chem Phys 148:201–207CrossRefGoogle Scholar
  84. Rozhnova YA, Kuznetsov SV, Luginina AA, Voronov VV, Ryabova AV, Pominova DV, Ermakov RP, Usachev VA, Kononenko NE, Baranchikov AE, Ivanov VK, Fedorov PP (2016) New Sr1−x−zRx(NH4)zF2+x−z (R = Yb, Er) solid solution as precursor for high efficiency up-conversion luminophor and optical ceramics on the base of strontium fluoride. Mater Chem Phys 172:150–157. CrossRefGoogle Scholar
  85. Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci COCIS 19:383–396. CrossRefGoogle Scholar
  86. Sedov VS, Kuznetsov SV, Ralchenko VG, Mayakova MN, Krivobok VS, Savin SS, Martyanov AK, Romanishkin ID, Khomich AA, Fedorov PP, Konov VI (2017) Diamond-EuF3 nanocomposites with bright orange photoluminescence. Diam Relat Mater 72:47–52. CrossRefGoogle Scholar
  87. Shanmugam K, Doosthosseini H, Varanasi S, Garnier G, Batchelor W (2018) Flexible spray coating process for smooth nanocellulose film production. Cellulose 25:1725–1741. CrossRefGoogle Scholar
  88. Shopsowitz KE, Hamad WY, MacLachlan MJ (2011) Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. J Angew Chem Int Ed 50:10991–10995. CrossRefGoogle Scholar
  89. Shopsowitz KE, Stahl A, Hamad WY, MacLachlan MJ (2012) Hard templating of nanocrystalline titanium dioxide with chiral nematic ordering. J Angew Chem Int Ed 51:6886–6890. CrossRefGoogle Scholar
  90. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. CrossRefGoogle Scholar
  91. Sirviö JA, Visanko M, Liimatainen H (2016) Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromol 17:3025–3032. CrossRefGoogle Scholar
  92. Sun B, Zhang M, Hou Q, Liu R, Wu T, Si C (2016) Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose 23:439–450. CrossRefGoogle Scholar
  93. Sun X, Wu Q, Zhang X, Ren S, Lei T, Li W, Xu G, Zhang Q (2018) Zhang Nanocellulose films with combined cellulose nanofibers and nanocrystals: tailored thermal, optical and mechanical properties. Cellulose 25:1103–1115. CrossRefGoogle Scholar
  94. Tardy BL, Ago M, Guo J, Borghei M, Kämäräinen T, Rojas OJ (2017) Optical properties of self-assembled cellulose nanocrystals films suspended at planar–symmetrical interfaces. Small 13:1702084. CrossRefGoogle Scholar
  95. Vicente AT, Araújo A, Mendes MJ, Nunes D, Oliveira MJ, Sanchez-Sobrado O, Ferreira MP, Águas H, Fortunato E, Martins R (2018) Multifunctional cellulose-paper for light harvesting and smart sensing applications. J Mater Chem C 6:3143–3181. CrossRefGoogle Scholar
  96. Wilts BD, Dumanli AG, Middleton R, Vukusic P, Vignolini S (2017) Chiral optics of helicoidal cellulose nanocrystal films. APL Photonics 2:040801. CrossRefGoogle Scholar
  97. Wu CN, Yang Q, Takeuchi M, Saito T, Isogai A (2014) Highly tough and transparent layered composites of nanocellulose and synthetic silicate. Nanoscale 6:392–399. CrossRefPubMedGoogle Scholar
  98. Xue J, Song F, Yin X, Wang X, Wang Y (2015) Let it shine: a transparent and photoluminescent foldable nanocellulose/quantum dot paper. ACS Appl Mater Interfaces 7:10076–10079. CrossRefPubMedGoogle Scholar
  99. Xue B, Zhang Z, Sun Y, Wang J, Jiang H, Du M, Chi C, Li X (2018) Near-infrared emissive lanthanide hybridized nanofibrillated cellulose nanopaper as ultraviolet filter. Carbohydr Polym 186:176–183. CrossRefPubMedGoogle Scholar
  100. Yagoub MYA, Swart HC, Noto LL, O’Connel JH, Lee ME, Coetsee E (2014) The effects of Eu-concentrations on the luminescent properties of SrF2: Eu nanophosphor. J Lumin 156:150–156. CrossRefGoogle Scholar
  101. Yagoub MYA, Swart HC, Coetsee E (2015) Concentration quenching, surface and spectral analyses of SrF2:Pr3+ prepared by different synthesis techniques. Opt Mat 42:204–209. CrossRefGoogle Scholar
  102. Zeng JH, Su J, Li ZH, Yan RX, Li YD (2005) Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb, Er3 + , phosphors of controlled size and morphology. Adv Mater 17:2119–2123CrossRefGoogle Scholar
  103. Zhang Z, Chang H, Xue B, Han Q, Lü X, Zhang S, Li X, Zhu X, Wong W, Li K (2017) New transparent flexible nanopaper as ultraviolet filter based on red emissive Eu(III) nanofibrillated cellulose. Opt Mat 73:747–753. CrossRefGoogle Scholar
  104. Zhang L, Lyu S, Chen Z, Wang S (2018) Fabrication flexible and luminescent nanofibrillated cellulose films with modified SrAl2O4: Eu, Dy phosphors via nanoscale silica and aminosilane. Nanomaterials 8:352–366. CrossRefPubMedCentralGoogle Scholar
  105. Zhao J, Wei Z, Feng X, Miao M, Sun L, Cao S, Shi L, Fang J (2014) Luminescent and transparent nanopaper based on rare-earth up-converting nanoparticles grafted nanofibrillated cellulose derived from garlic skin. ACS Appl Mater Interfaces 6:14945–14951. CrossRefPubMedGoogle Scholar
  106. Zor E (2018) Silver nanoparticles-embedded nanopaper as a colorimetric chiral sensing platform. Talanta 184:149–155. CrossRefPubMedGoogle Scholar
  107. Zor E, SabriAlpaydin S, Arici A, Muhammed EsadSaglam ME, Bingol H (2018) Photoluminescentnanopaper-based microcuvette for iodide detection in seawater. Sens Actuators B Chem 254:1216–1224. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • P. P. Fedorov
    • 1
    Email author
  • A. A. Luginina
    • 2
  • S. V. Kuznetsov
    • 1
  • V. V. Voronov
    • 1
  • A. A. Lyapin
    • 3
  • A. S. Ermakov
    • 3
  • D. V. Pominova
    • 1
  • A. D. Yapryntsev
    • 4
  • V. K. Ivanov
    • 4
  • A. A. Pynenkov
    • 3
  • K. N. Nishchev
    • 3
  1. 1.Prokhorov General Physics Institute of the Russian Academy of SciencesMoscowRussia
  2. 2.Russian Institute for Scientific and Technical Information (VINITI RAS)MoscowRussia
  3. 3.Ogarev Mordovia State UniversitySaranskRussia
  4. 4.Kurnakov Institute of General and Inorganic ChemistryMoscowRussia

Personalised recommendations