, Volume 26, Issue 3, pp 1641–1655 | Cite as

Nanocellulose biosynthesis by Komagataeibacter hansenii in a defined minimal culture medium

  • Samara S. de SouzaEmail author
  • Fernanda V. Berti
  • Karla P. V. de Oliveira
  • Camila Q. P. Pittella
  • Julia V. de Castro
  • Catiane Pelissari
  • Carlos R. Rambo
  • Luismar M. Porto
Original Research


This study evaluates the capability of Komagataeibacter hansenii ATCC 23769 to synthesize bacterial nanocellulose (BNC) under strict limitation of nutrients with different carbon and nitrogen sources in a defined minimal culture medium in static culture. Five carbon sources were prepared based on the C-molar basis concentration: glycerol, glucose, fructose, mannitol and saccharose, combined with three different nitrogen sources: NH4Cl, NH4NO3 and (NH4)2SO4. BNC production yields were determined based on the dry weight of the produced BNC-Minimal membranes and the carbon consumption for each condition. The combination of 25 mM of glucose and 10 mM of NH4Cl showed the best concentration of C and N sources regarding BNC yield and membrane stability. This is a new proposal of defined minimal culture medium that supports growth of BNC membranes production, without the addition of complex elements such as yeast extract and peptone. BNC membranes produced under these conditions exhibited great optical transparency compared to the membranes produced in complex media (Mannitol and Hestrin–Schramm), therefore increasing a wide range of technological applications.

Graphical abstract


Komagataeibacter hansenii Bacterial nanocellulose Defined minimal culture medium Carbon and nitrogen sources Transparency 



The authors thank the National Council for the Improvement of Higher Education (CAPES), for the financial support. The authors also thank the Central Laboratory of Electronic Microscopy at Federal University of Santa Catarina (LCME/UFSC) and the Analytical Center of the Chemical and Food Engineering Department (EQA/UFSC).


Funding was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Grant No. 1407463/2014-1) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 402901/2013-4).

Compliance with ethical standards

Conflict of interest

All authors have agreed to submit the manuscript to the Cellulose. The authors declare no conflict of interest.


  1. Azeredo J, Oliveira R (1996) A new method for precipitating bacterial exopolysaccharides. Biotechnol Tech 10:341–344. CrossRefGoogle Scholar
  2. Berti FV, Rambo CR, Dias PF, Porto LM (2013) Nanofiber density determines endothelial cell behavior on hydrogel matrix. Mater Sci Eng C 33:4684–4691CrossRefGoogle Scholar
  3. Brown AJ (1886) XIX.-The chemical action of pure cultivations of bacterium aceti. J Chem Soc Trans 49:172–187. CrossRefGoogle Scholar
  4. Caiut JMA, Barud H da S, Messaddeq Y et al (2011) Optically transparent composites based on bacterial cellulose and boehmite, siloxane and/or a boehmite- siloxane system. BR Patent, WO/2012/100315, 2 Aug 2012Google Scholar
  5. Castro C, Zuluaga R, Putaux J-L et al (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84:96–102. CrossRefGoogle Scholar
  6. Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124Google Scholar
  7. Chernoviz PLN (1996) Farmacopéia Brasileira. Editora Itatiaia Ltda, Rio de JaneiroGoogle Scholar
  8. Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411. CrossRefGoogle Scholar
  9. Dagang L, Qiaoyun D, Yan L (2013) Bacterial cellulose nanometer optical transparent film preparation method. CN Patent, CN103396569A, 20 Nov 2013Google Scholar
  10. Dahman Y, Jayasuriya KE, Kalis M (2010) Potential of biocellulose nanofibers production from agricultural renewable resources: preliminary study. Appl Biochem Biotechnol 162:1647–1659. CrossRefGoogle Scholar
  11. Feng H, Xue ZY, Guang Y, Xia YX (2011) Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose. J Chem Technol Biotechnol 86:675–680. CrossRefGoogle Scholar
  12. Forng ER, Anderson SM, Cannon RE (1989) Synthetic medium for Acetobacter xylinum that can be used for isolation of auxotrophic mutants and study of cellulose biosynthesis. Appl Environ Microbiol 55:1317–1319Google Scholar
  13. Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442. CrossRefGoogle Scholar
  14. Gomes FP, Silva NHCS, Trovatti E et al (2013) Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenerg 55:205–211. CrossRefGoogle Scholar
  15. Hong F, Wei B, Chen L (2015) Preliminary study on biosynthesis of bacterial nanocellulose tubes in a novel double-silicone-tube bioreactor for potential vascular prosthesis. Biomed Res Int. Google Scholar
  16. Hwang JW, Yang YK, Hwang JK et al (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Biosci Bioeng 88:183–188. CrossRefGoogle Scholar
  17. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270CrossRefGoogle Scholar
  18. Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106. CrossRefGoogle Scholar
  19. Jozala AF, de Lencastre-Novaes LC, Lopes AM et al (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100:2063–2072CrossRefGoogle Scholar
  20. Jung H-I, Lee O-M, Jeong J-H et al (2010) Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses-corn steep liquor medium. Appl Biochem Biotechnol 162:486–497. CrossRefGoogle Scholar
  21. Keshk SMAS (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 04:1–10. CrossRefGoogle Scholar
  22. Keshk SMAS, Sameshima K (2005) Evaluation of different carbon sources for bacterial cellulose production. Afr J Biotechnol 4:478–482Google Scholar
  23. Khoda AKMB, Koc B (2013) Functionally heterogeneous porous scaffold design for tissue engineering. Comput Des 45:1276–1293. Google Scholar
  24. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chemie Int Ed 44:3358–3393. CrossRefGoogle Scholar
  25. Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245. CrossRefGoogle Scholar
  26. Kumar RR, Prasad S (2011) Metabolic engineering of bacteria. Indian J Microbiol 51:403–409. CrossRefGoogle Scholar
  27. Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76:333–335. CrossRefGoogle Scholar
  28. Legnani C, Vilani C, Calil VL et al (2008) Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517:1016–1020. CrossRefGoogle Scholar
  29. Li Y, Wang S, Huang R et al (2015) Evaluation of the effect of the structure of bacterial cellulose on full thickness skin wound repair on a microfluidic chip. Biomacromol 16:780–789. CrossRefGoogle Scholar
  30. Liu M, Zhong C, Zhang YM et al (2016) Metabolic investigation in Gluconacetobacter xylinus and its bacterial cellulose production under a direct current electric field. Front Microbiol 7:331. Google Scholar
  31. Luo H, Zhang J, Xiong G, Wan Y (2014) Evolution of morphology of bacterial cellulose scaffolds during early culture. Carbohydr Polym 111:722–728CrossRefGoogle Scholar
  32. Masaoka S, Ohe T, Sakota N (1993) Production of cellulose from glucose by Acetobacter xylinum. J Ferment Bioeng 75:18–22. CrossRefGoogle Scholar
  33. Matsuoka M, Tsuchida T, Matsushita K et al (1996) A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci Biotechnol Biochem 60:575–579. CrossRefGoogle Scholar
  34. Metcalfe AD, Ferguson MWJ (2007) Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 4:413–437. CrossRefGoogle Scholar
  35. Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:576–583. CrossRefGoogle Scholar
  36. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. CrossRefGoogle Scholar
  37. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor, New YorkGoogle Scholar
  38. Muller D, Rambo CR, Porto LM et al (2013) Structure and properties of polypyrrole/bacterial cellulose nanocomposites. Carbohydr Polym 94:655–662. CrossRefGoogle Scholar
  39. Niaounakis M (2015a) Medical, dental, and pharmaceutical applications. In: Jackson D (eds) Biopolymers: applications and trends, 1st edn. William Andrew Publishing, Oxford, pp 291–405CrossRefGoogle Scholar
  40. Niaounakis M (2015b) Electronics. In: Jackson D (eds) Biopolymers: applications and trends, 1st edn. William Andrew Publishing, Oxford, pp 233–255CrossRefGoogle Scholar
  41. O’Neill H, Pingali SV, Petridis L et al (2017) Dynamics of water bound to crystalline cellulose. Sci Rep 7:11840. CrossRefGoogle Scholar
  42. Oikawa T, Ohtori T, Ameyama M (1995) Production of cellulose from D-Mannitol by Acetobacter xylinum KU-1. Biosci Biotechnol Biochem 59:331–332. CrossRefGoogle Scholar
  43. Pickens LB, Tang Y, Chooi Y-H (2011) Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng 2:211–236. CrossRefGoogle Scholar
  44. Ramana K, Tomar A, Singh L (2000) Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J Microbiol Biotechnol 16:245–248CrossRefGoogle Scholar
  45. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58. Google Scholar
  46. Ruka DR, Simon GP, Dean KM (2012) Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym 89:613–622CrossRefGoogle Scholar
  47. Santos SM, Carbajo JM, Villar J (2013) The effect of carbon and nitrogen sources on bacterial cellulose production and properties from Gluconacetobacter sucrofermentans CECT 7291 focused on its use in degraded paper restoration. BioResources 8:3630–3645Google Scholar
  48. Saska S, Teixeira LN, Tambasco de Oliveira P et al (2012) Bacterial cellulose-collagen nanocomposite for bone tissue engineering. J Mater Chem 22:22102–22112. CrossRefGoogle Scholar
  49. Saxena IM, Brown RM (2012) Biosynthesis of bacterial cellulose. In: Gama M, Gatenholm P, Klemm D (eds) Bacterial nanocellulose: a sophisticated multifunctional material. CRC, Boca Raton, pp 1–18Google Scholar
  50. Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/ liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129. CrossRefGoogle Scholar
  51. Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1. CrossRefGoogle Scholar
  52. Son H-J, Kim H-G, Kim K-K et al (2003) Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour Technol 86:215–219. CrossRefGoogle Scholar
  53. Souza SS, Castro JV, Porto LM (2018) Modeling the core metabolism of Komagataeibacter hansenii ATCC 23769 to evaluate nanocellulose biosynthesis. Braz J Chem Eng 35(3) (in press)Google Scholar
  54. Suwanposri A, Yukphan P, Yamada Y, Ochaikul D (2013) Identification and biocellulose production of Gluconacetobacter strains isolated from tropical fruits in thailand. Maejo Int J Sci Technol 7:70–82Google Scholar
  55. Svensson A, Nicklasson E, Harrah T et al (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431CrossRefGoogle Scholar
  56. Tabaii MJ, Emtiazi G (2016) Comparison of bacterial cellulose production among different strains and fermented media. Appl Food Biotechnol 3:35–41Google Scholar
  57. Tam RY, Fisher SA, Baker AEG, Shoichet MS (2016) Transparent porous polysaccharide cryogels provide biochemically defined, biomimetic matrices for tunable 3D cell culture. Chem Mater 28:3762–3770. CrossRefGoogle Scholar
  58. Tazi N, Zhang Z, Messaddeq Y et al (2012) Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules. AMB Express 2:61. CrossRefGoogle Scholar
  59. Torres FG, Commeaux S, Troncoso OP (2012) Biocompatibility of bacterial cellulose based biomaterials. J Funct Biomater 3:864–878CrossRefGoogle Scholar
  60. Tyagi N, Suresh S (2016) Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization. J Clean Prod 112, Part 1:71–80. CrossRefGoogle Scholar
  61. Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crops Prod 35:92–97. CrossRefGoogle Scholar
  62. Valepyn E, Berezina N, Paquot M (2012) Optimization of Production and preliminary characterization of new exopolysaccharides from Gluconacetobacter hansenii LMG1524. Adv Microbiol 02:488–496CrossRefGoogle Scholar
  63. Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21:545–554. CrossRefGoogle Scholar
  64. Velasco-Bedrán H, López-Isunza F (2007) The unified metabolism of Gluconacetobacter entanii in continuous and batch processes. Process Biochem 42:1180–1190CrossRefGoogle Scholar
  65. Xinsheng L, Wankei W, Chandrakant JP (2009) Transparent bacterial cellulose nanocomposite biofilms. US Patent, 929US20130011385, 10 Jan 2013Google Scholar
  66. Wilson SA, Roberts SC (2014) Metabolic engineering approaches for production of biochemicals in food and medicinal plants. Curr Opin Biotechnol 26:174–182. CrossRefGoogle Scholar
  67. Yim SM, Song JE, Kim HR (2016) Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process Biochem 59, Part A:26–36. Google Scholar
  68. Yodsuwan N, Owatworakit A, Ngaokla A et al (2012) Effect of carbon and nitrogen sources on bacterial cellulose production for bionanocomposite materials. In: 1st MFUIC 2012. Mae Fah Luang University, Chiang Rai, Thailand. Accessed 02 April 2018
  69. Yongjun Z, Yang H, Xin Z et al (2015) Transparent reproductive bacterial cellulose reproductive membrane as well as preparation method and application thereof. CN Patent, CN104587516, 06 May 2014Google Scholar
  70. Zeng X, Small DP, Wan W (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydr Polym 85:506–513. CrossRefGoogle Scholar
  71. Zhang J, Greasham R (1999) Chemically defined media for commercial fermentations. Appl Microbiol Biotechnol 51:407–421. CrossRefGoogle Scholar
  72. Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8:607–626. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Samara S. de Souza
    • 1
    Email author
  • Fernanda V. Berti
    • 1
  • Karla P. V. de Oliveira
    • 1
  • Camila Q. P. Pittella
    • 1
  • Julia V. de Castro
    • 1
  • Catiane Pelissari
    • 2
  • Carlos R. Rambo
    • 3
  • Luismar M. Porto
    • 1
  1. 1.Genomic and Tissue Engineering Group, InteLab – Integrated Technologies Laboratory, Department of Chemical and Food EngineeringFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.GESAD - Decentralized Sanitation Research Group, Department of Sanitary and Environmental EngineeringFederal University of Santa Catarina - UFSCFlorianópolisBrazil
  3. 3.Department of Electrical and Electronic EngineeringFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations