, Volume 26, Issue 1, pp 507–528 | Cite as

Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends

  • Oriana M. Vanderfleet
  • Michael S. Reid
  • Julien Bras
  • Laurent Heux
  • Jazmin Godoy-Vargas
  • Mohan K. R. Panga
  • Emily D. CranstonEmail author
Original Paper


This study provides insight into the thermal degradation of cotton cellulose nanocrystals (CNCs) by tuning their physico-chemical properties through acid hydrolysis using blends of phosphoric and sulfuric acid. CNCs isolated by sulfuric acid hydrolysis are known to degrade at lower temperatures than CNCs hydrolyzed with phosphoric acid; however, the reason for this change is unclear. Although all CNCs are inherently relatively thermally stable, their application in polymer composites and liquid formulations designed to function at high temperatures could be extended if thermal stability was improved. Herein, thermogravimetric analysis was carried out on six types of CNCs (in both acid and sodium form) with different surface chemistry, surface charge density, dimensions, crystallinity and degree of polymerization (DP) to identify the key properties that influence thermal stability of nanocellulose. In acid form, CNC surface charge density was found to be the determining factor in thermal stability due to de-esterification and acid-catalyzed degradation. Conversely, in sodium form, surface chemistry and charge density had a negligible effect on the onset of thermal degradation, however, the DP of the cellulose polymer chains highly influenced stability. The presence of more reducing ends in lower DP nanocrystals is inferred to facilitate thermally-induced depolymerization and degradation. Degree of crystallinity did not significantly affect CNC thermal stability. Studying CNCs produced from single or blends of acids (and changing the counterion) elucidated the thermal behavior of cellulose and furthermore demonstrated new routes to tailor CNCs thermal and colloidal stability.

Graphical abstract


Nanocellulose Cellulose nanocrystals Thermal stability Degree of polymerization Acid hydrolysis Phosphoric acid 



Special thanks to the Natural Sciences and Engineering Research Council of Canada (NSERC) and Schlumberger for funding this Project (NSERC EGP492303-15 and EGP509230-17). Guidance from Dr. A. Yakovlev and Dr. V. Lafitte of Schlumberger is greatly appreciated. We acknowledge Professors T. Hoare, C. de Lannoy and A. Adronov (at McMaster), as well as Dr. B. Jean (Cermav-CNRS Grenoble, France) for use of equipment and support. We thank V. Jarvis from the McMaster Analytical X-ray Diffraction Facility for performing XRD measurements and fittings, Dr. K. Moffat from Xerox Research Centre of Canada for elemental analysis, Dr. Y. Ogawa for NMR measurements and Dr. E. Niinivaara for discussion and assistance with DP experiments. The McMaster Biointerfaces Institute is acknowledged for access to instrumentation. Cranston holds the Canada Research Chair in Bio-based Nanomaterials (Tier 2). LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir—Grant Agreement No. ANR-11-LABX-0030) and the PolyNat Carnot Institute (Investissements d’Avenir—Grant Agreement No. ANR-16-CARN-0025-01).

Supplementary material

10570_2018_2175_MOESM1_ESM.pdf (363 kb)
Supplementary material 1 (PDF 363 kb)


  1. Agarwal UP, Ralph SA, Reiner RS, Baez C (2016) Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23:125–144. CrossRefGoogle Scholar
  2. Agustin MB, Nakatsubo F, Yano H (2016) The thermal stability of nanocellulose and its acetates with different degree of polymerization. Cellulose 23:451–464. CrossRefGoogle Scholar
  3. Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23:1073–1086. CrossRefGoogle Scholar
  4. Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A Physicochem Eng Asp 142:75–82. CrossRefGoogle Scholar
  5. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27. CrossRefGoogle Scholar
  6. Ávila Ramírez JA, Suriano CJ, Cerrutti P, Foresti ML (2014) Surface esterification of cellulose nanofibers by a simple organocatalytic methodology. Carbohydr Polym 114:416–423. CrossRefGoogle Scholar
  7. Battista OA (1950) Hydrolysis and crystallization of cellulose. Ind Eng Chem 42:502–507. CrossRefGoogle Scholar
  8. Battista OA, Coppick S, Howsmon JA et al (1956) Level-off degree of polymerization. Ind Eng Chem 48:333–335. CrossRefGoogle Scholar
  9. Beck S, Bouchard J (2014) Auto-catalyzed acidic desulfation of cellulose nanocrystals. Nord Pulp Pap Res J 29:6–14. CrossRefGoogle Scholar
  10. Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromol 13:1486–1494. CrossRefGoogle Scholar
  11. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054. CrossRefGoogle Scholar
  12. Bhattacharjee S (2016) DLS and zeta potential—What they are and what they are not? J Control Release 235:337–351. CrossRefGoogle Scholar
  13. Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180. CrossRefGoogle Scholar
  14. Bouchard J, Méthot M, Fraschini C, Beck S (2016) Effect of oligosaccharide deposition on the surface of cellulose nanocrystals as a function of acid hydrolysis temperature. Cellulose 23:3555–3567. CrossRefGoogle Scholar
  15. Bradbury AGW, Sakai Y, Shafizadeh F (1979) A kinetic model for pyrolysis of cellulose. J Appl Polym Sci 23:3271–3280. CrossRefGoogle Scholar
  16. Brinkmann A, Chen M, Couillard M et al (2016) Correlating cellulose nanocrystal particle size and surface area. Langmuir 32:6105–6114. CrossRefGoogle Scholar
  17. Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromol 14:1223–1230. CrossRefGoogle Scholar
  18. Cao Y, Zavaterri P, Youngblood J et al (2015) The influence of cellulose nanocrystal additions on the performance of cement paste. Cem Concr Compos 56:73–83. CrossRefGoogle Scholar
  19. Cao Y, Tian N, Bahr D et al (2016) The influence of cellulose nanocrystals on the microstructure of cement paste. Cem Concr Compos 74:164–173. CrossRefGoogle Scholar
  20. Capron I, Rojas OJ, Bordes R (2017) Behavior of nanocelluloses at interfaces. Curr Opin Colloid Interface Sci 29:83–95. CrossRefGoogle Scholar
  21. Chen L, Wang Q, Hirth K et al (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762. CrossRefGoogle Scholar
  22. Chen L, Zhu JY, Baez C et al (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843. CrossRefGoogle Scholar
  23. Cherif M, Mgaidi A, Ammar N et al (2000) A new investigation of aqueous orthophosphoric acid speciation using Raman spectroscopy. J Solut Chem 29:255–269. CrossRefGoogle Scholar
  24. Conner A (1995) Size exclusion chromatography of cellulose and cellulose derivatives. In: Wu CS (ed) Handbook of size exclusion chromatography, 1st edn. Marcel Dekker, New York, pp 331–352Google Scholar
  25. Cranston ED, Gray DG (2006) Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromol 7:2522–2530. CrossRefGoogle Scholar
  26. Criado P, Fraschini C, Jamshidian M et al (2017) Gamma-irradiation of cellulose nanocrystals (CNCs): investigation of physicochemical and antioxidant properties. Cellulose 24:2111–2124. CrossRefGoogle Scholar
  27. Dastjerdi Z, Cranston ED, Dubé MA (2018) Pressure sensitive adhesive property modification using cellulose nanocrystals. Int J Adhes Adhes 81:36. CrossRefGoogle Scholar
  28. de Britto D, Assis OBG (2009) Thermal degradation of carboxymethylcellulose in different salty forms. Thermochim Acta 494:115–122. CrossRefGoogle Scholar
  29. De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631. CrossRefGoogle Scholar
  30. Domingues RMAR, Gomes MEM, Reis RRL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 15:2327–2346. CrossRefGoogle Scholar
  31. Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32. CrossRefGoogle Scholar
  32. Dong S, Bortner MJ, Roman M (2016) Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: a central composite design study. Ind Crops Prod 93:76–87. CrossRefGoogle Scholar
  33. Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Crystallogr 44:184–192. CrossRefGoogle Scholar
  34. Eyley SS, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779. CrossRefGoogle Scholar
  35. Foster EJ, Moon RJ, Agarwal UP et al (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679. CrossRefGoogle Scholar
  36. French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20:583–588. CrossRefGoogle Scholar
  37. Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508. CrossRefGoogle Scholar
  38. Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromol 16:3399–3410. CrossRefGoogle Scholar
  39. Giese M, Blusch LK, Khan MK, MacLachlan MJ (2015) Functional materials from cellulose-derived liquid-crystal templates. Angew Chem Int Ed 54:2888–2910. CrossRefGoogle Scholar
  40. Grønli M, Antal MJ, Várhegyi G (1999) A round-Robin study of cellulose pyrolysis kinetics by thermogravimetry. Ind Eng Chem Res 38:2238–2244. CrossRefGoogle Scholar
  41. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542. CrossRefGoogle Scholar
  42. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self assembly, and applications. Chem Rev 110:3479–3500. CrossRefGoogle Scholar
  43. Heggset EB, Chinga-Carrasco G, Syverud K (2017) Temperature stability of nanocellulose dispersions. Carbohydr Polym 157:114–121. CrossRefGoogle Scholar
  44. Honorato-Rios C, Lehr C, Schütz C et al (2018) Fractionation of cellulose nanocrystals: enhancing liquid crystal ordering without promoting gelation. NPG Asia Mater 10:455–465. CrossRefGoogle Scholar
  45. Hu W, Chen S, Xu Q, Wang H (2011) Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydr Polym 83:1575–1581. CrossRefGoogle Scholar
  46. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. CrossRefGoogle Scholar
  47. Jain R, Lal K, Bhatnagar H (1982) Thermal degradation of cellulose and its esters in air. Indian J Text Res 7:49–55Google Scholar
  48. Kargarzadeh H, Ahmad I, Abdullah I et al (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866. CrossRefGoogle Scholar
  49. Kaur B, Gur IS, Bhatnagar HL (1987) Thermal degradation studies of cellulose phosphates and cellulose thiophosphates. Die Angew Makromol Chem 147:157–183. CrossRefGoogle Scholar
  50. Kedzior SA, Kiriakou M, Niinivaara E et al (2018) Incorporating cellulose nanocrystals into the core of polymer latex particles via polymer grafting. ACS Macro Lett 7:990–996. CrossRefGoogle Scholar
  51. Kim UJ, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95:778–781. CrossRefGoogle Scholar
  52. Leung ACW, Hrapovic S, Lam E et al (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305. CrossRefGoogle Scholar
  53. Lewis L, Derakhshandeh M, Hatzikiriakos SG et al (2016) Hydrothermal gelation of aqueous cellulose nanocrystal suspensions. Biomacromol 17:2747–2754. CrossRefGoogle Scholar
  54. Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393. CrossRefGoogle Scholar
  55. Lin Y, Cho J, Tompsett GA et al (2009) Kinetics and mechanism of cellulose pyrolysis kinetics and mechanism of cellulose pyrolysis. Cellulose 113:20097–20107. Google Scholar
  56. Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336. CrossRefGoogle Scholar
  57. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B Polym Phys 52:791–806. CrossRefGoogle Scholar
  58. Matsuoka S, Kawamoto H, Saka S (2014) What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end. J Anal Appl Pyrolysis 106:138–146. CrossRefGoogle Scholar
  59. Molnes SN, Torrijos IP, Strand S et al (2016) Sandstone injectivity and salt stability of cellulose nanocrystals (CNC) dispersions—premises for use of CNC in enhanced oil recovery. Ind Crops Prod 93:152–160. CrossRefGoogle Scholar
  60. Molnes SN, Paso KG, Strand S, Syverud K (2017) The effects of pH, time and temperature on the stability and viscosity of cellulose nanocrystal (CNC) dispersions: implications for use in enhanced oil recovery. Cellulose. Google Scholar
  61. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. CrossRefGoogle Scholar
  62. Mukherjee SM, Woods HJ (1953) X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim Biophys Acta 10:499–511. CrossRefGoogle Scholar
  63. Nelson ML, Tkipp VW (1949) Determination of the leveling-off degree of polymerization of cotton and rayon. J Polym Sci X:577–586. Google Scholar
  64. Nelson K, Retsina T, Iakovlev M et al (2016) American process: production of low cost nanocellulose for renewable, advanced materials applications. Springer Ser Mater Sci 224:267–302. CrossRefGoogle Scholar
  65. Nickerson RF, Habrle JA (1947) Cellulose intercrystalline structure. Ind Eng Chem 39:1507–1512. CrossRefGoogle Scholar
  66. Nishiyama Y, Kim UJ, Kim DY et al (2003a) Periodic disorder along ramie cellulose microfibrils. Biomacromol 4:1013–1017. CrossRefGoogle Scholar
  67. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003b) Crystal structure and hydrogen bonding system in cellulose iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306. CrossRefGoogle Scholar
  68. Noguchi Y, Homma I, Matsubara Y (2017) Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose 24:1295–1305. CrossRefGoogle Scholar
  69. Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. CrossRefGoogle Scholar
  70. Poletto M, Zattera AJ, Forte MMC, Santana RMC (2012) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour Technol 109:148–153. CrossRefGoogle Scholar
  71. Rånby BG, Banderet A, Sillén LG (1949) Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 3:649–650. CrossRefGoogle Scholar
  72. Reid MS, Villalobos M, Cranston ED (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33:1583–1598. CrossRefGoogle Scholar
  73. Roman M (2015) Toxicity of cellulose nanocrystals: a review. Ind Biotechnol 11:25–33. CrossRefGoogle Scholar
  74. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677. CrossRefGoogle Scholar
  75. Sadeghifar H, Filpponen I, Clarke SP et al (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355. CrossRefGoogle Scholar
  76. Saito N, Seki K, Aoyama M (1991) Super absorbent materials from lignocellulosic materials by phosphorylation. Sen’i Gakkaishi 47:255–258. CrossRefGoogle Scholar
  77. Scherirs J, Camino G, Tumiatti W (2001) Overview of water evolution during the thermal degradation of cellulose. Eur Polym J 37:933–942CrossRefGoogle Scholar
  78. Shafizadeh F, Bradbury AGW (1979) Thermal-degradation of cellulose in air and nitrogen at low-temperatures. J Appl Polym Sci 23:1431–1442. CrossRefGoogle Scholar
  79. Stålbrand H, Mansfield SD, Saddler JN et al (1998) Analysis of molecular size distributions of cellulose molecules during hydrolysis of cellulose by recombinant cellulomonas fimi beta-1,4-glucanases. Appl Environ Microbiol 64:2374–2379Google Scholar
  80. Usov I, Nyström G, Adamcik J et al (2015) Understanding nanocellulose chirality and structure-properties relationship at the single fibril level. Nat Commun 6:7564. CrossRefGoogle Scholar
  81. Van Mao RL, Zhao Q, Dima G, Petraccone D (2011) New process for the acid-catalyzed conversion of cellulosic biomass (AC3B) into alkyl levulinates and other esters using a unique one-pot system of reaction and product extraction. Catal Lett 141:271–276. CrossRefGoogle Scholar
  82. Vanderfleet OM, Osorio DA, Cranston ED (2018) Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis. Philos Trans R Soc Lond A Math Phys Eng Sci 376:1–7. CrossRefGoogle Scholar
  83. Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer (Guildf) 48:3486–3493. CrossRefGoogle Scholar
  84. Wang Q, Zhao X, Zhu JY (2014) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind Eng Chem Res 53:11007–11014. CrossRefGoogle Scholar
  85. Wang R, Chen L, Zhu JY, Yang R (2017) Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis. ChemNanoMat 3:328–335. CrossRefGoogle Scholar
  86. Yu H, Qin Z, Liang B et al (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944. CrossRefGoogle Scholar
  87. Yu HY, Zhang DZ, Lu FF, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng 4:2632–2643. CrossRefGoogle Scholar
  88. Zhao Y, Zhang Y, Lindström ME, Li J (2015) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr Polym 117:286–296. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholmSweden
  3. 3.Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2GrenobleFrance
  4. 4.Univ. Grenoble Alpes, CNRS, CermavSaint Martin d’Hères CedexFrance
  5. 5.Schlumberger Technology CorporationSugar LandUSA

Personalised recommendations